22 research outputs found

    Optimal design of N-UU parallel mechanisms

    No full text
    In this paper, we present the optimal design of N-UU (U stands for universal joints) parallel mechanisms (PM) with general geometry, for the achievement of maximal singularity-free tilt angle. We first briefly recall the synthesis condition and constraint analysis of the general N-UU PM, showing that static singularities may be factorized into active and passive constraint singularities. We then formulate the optimal design problem as the maximization of the end-effector tilt angle subject to closeness to active and passive constraint singularities. We conclude the paper by illustrating how an angle-equalizing device on the inner revolute pairs of the UU legs may help avoiding passive constraint singularities and increasing the maximal tilt angle

    Loss of the polarity protein Par3 promotes dendritic spine neoteny and enhances learning and memory

    No full text
    Summary: The Par3 polarity protein is critical for subcellular compartmentalization in different developmental processes. Variants of PARD3, encoding PAR3, are associated with intelligence and neurodevelopmental disorders. However, the role of Par3 in glutamatergic synapse formation and cognitive functions in vivo remains unknown. Here, we show that forebrain-specific Par3 conditional knockout leads to increased long, thin dendritic spines in vivo. In addition, we observed a decrease in the amplitude of miniature excitatory postsynaptic currents. Surprisingly, loss of Par3 enhances hippocampal-dependent spatial learning and memory and repetitive behavior. Phosphoproteomic analysis revealed proteins regulating cytoskeletal dynamics are significantly dysregulated downstream of Par3. Mechanistically, we found Par3 deletion causes increased Rac1 activation and dysregulated microtubule dynamics through CAMSAP2. Together, our data reveal an unexpected role for Par3 as a molecular gatekeeper in regulating the pool of immature dendritic spines, a rate-limiting step of learning and memory, through modulating Rac1 activation and microtubule dynamics in vivo

    Sumatran Fleabane (<i>Conyza sumatrensis</i>) Control in No-Tillage Soybean with Diclosulam Plus Halauxifen-Methyl

    Full text link
    Due to the limited availability of selective herbicides to control Sumatran fleabane after soybean emergence, it is essential to develop new options that provide effective control prior to planting. A new herbicide formulation containing diclosulam+halauxifen-methyl was evaluated for effectiveness at two Sumatran fleabane plant heights (5 to 10 cm, and 10 to 50 cm) and for soybean selectivity when applied at 7 or 3 d before planting. Combined results from the two sites showed that diclosulam+halauxifen, applied either alone or in a tank mixture with glyphosate, and the tank mixture of diclosulam+2,4-D amine+glyphosate are effective at all rates tested to control Sumatran fleabane in preplant applications. Crop response was observed with applications 7 days before planting at only one of the sites. A rate-dependent crop response was observed for pre-plant applications performed 3 days before soybean planting. However, crop yield was not significantly affected for either timing across all rates. All rates tested of diclosulam+halauxifen in this study were considered safe to soybean.</jats:p

    Kitty Cats Center

    Get PDF
    This paper provides a method for computing force-feasible paths on the Stewart platform. Given two configurations of the platform, the method attempts to connect them through a path that, at any point, allows the platform to counteract any external wrench lying inside a predefined six-dimensional region. In particular, the Jacobian matrix of the manipulator will be full rank along such path, so that the path will not traverse the forward singularity locus at any point. The path is computed by first characterizing the force-feasible C-space of the manipulator as the solution set of a system of equations, and then using a higher-dimensional continuation technique to explore this set systematically from one configuration, until the second configuration is found. Examples are included that demonstrate the performance of the method on illustrative situations.Preprin

    Navigating the Wrench-Feasible C-Space of Cable-Driven Hexapods

    Get PDF
    Abstract Motion paths of cable-driven hexapods must carefully be planned to ensure that the lengths and tensions of all cables remain within acceptable limits, for a given wrench applied to the platform. The cables cannot go slack –to keep the control of the platform – nor excessively tight –to prevent cable breakage – even in the presence of bounded perturbations of the wrench. This paper proposes a path planning method that accommodates such constraints simultaneously. Given two configurations of the platform, the method attempts to connect them through a path that, at any point, allows the cables to counteract any wrench lying inside a predefined uncertainty region. The resulting C-space is placed in correspondence with a smooth manifold, which allows defining a continuation strategy to search this space systematically from one configuration, until the second configuration is found, or path non-existence is proved by exhaustion of the search. The approach is illustrated on the NIST Robocrane hexapod, but it remains applicable to general cable-driven hexapods, either to navigate their full six-dimensional C-space, or any of its slices
    corecore