3,281 research outputs found
Vibrational mechanics in an optical lattice: controlling transport via potential renormalization
We demonstrate theoretically and experimentally the phenomenon of vibrational
resonance in a periodic potential, using cold atoms in an optical lattice as a
model system. A high-frequency (HF) drive, with frequency much larger than any
characteristic frequency of the system, is applied by phase-modulating one of
the lattice beams. We show that the HF drive leads to the renormalization of
the potential. We used transport measurements as a probe of the potential
renormalization. The very same experiments also demonstrate that transport can
be controlled by the HF drive via potential renormalization.Comment: Phys. Rev. Lett., in pres
Current reversals in a rocking ratchet: the frequency domain
Motivated by recent work [D. Cubero et al., Phys. Rev. E 82, 041116 (2010)],
we examine the mechanisms which determine current reversals in rocking ratchets
as observed by varying the frequency of the drive. We found that a class of
these current reversals in the frequency domain are precisely determined by
dissipation-induced symmetry breaking. Our experimental and theoretical work
thus extends and generalizes the previously identified relationship between
dynamical and symmetry-breaking mechanisms in the generation of current
reversals
Evolution of Solar Magnetic Field and Associated Multi-wavelength Phenomena: Flare events on 20 November 2003
We analyze H-alpha images, soft X-ray profiles, magnetograms, extreme
ultra-violet images and radio observations of two homologous flare events
(M1.4/1N and M9.6/2B) on 20 November 2003 in the active region NOAA 10501 and
study properties of reconnection between twisted filament systems, energy
release and associated launch of coronal mass ejections (CMEs). During both
events twisted filaments observed in H-alpha approached each other and
initiated the flare processes. However, the second event showed the formation
of cusp as the filaments interacted. The rotation of sunspots of opposite
polarities, inferred from magnetograms likely powered the twisted filaments and
injection of helicity. Along the current sheet between these two opposite
polarity sunspots, the shear was maximum, which could have caused the twist in
the filament. At the time of interaction between filaments, the reconnection
took place and flare emission in thermal and non-thermal energy ranges attained
the maximum. The radio signatures revealed the opening of field lines resulting
from reconnection. The H-alpha images and radio data provide the inflow speed
leading to reconnection and the scale size of particle acceleration region. The
first event produced a narrow and slow CME, whereas the later one was
associated with a fast full halo CME. The halo CME signatures observed between
Sun and Earth using white-light and scintillation images and in-situ
measurements indicated the magnetic energy utilized in the expansion and
propagation. The magnetic cloud signature at the Earth confirmed the flux rope
ejected at the time of filament interaction and reconnection.Comment: 22 pages, 16 figures, Accepted for the publication in Astrophysical
Journal (APJ
Isogeometric analysis for functionally graded microplates based on modified couple stress theory
Analysis of static bending, free vibration and buckling behaviours of
functionally graded microplates is investigated in this study. The main idea is
to use the isogeometric analysis in associated with novel four-variable refined
plate theory and quasi-3D theory. More importantly, the modified couple stress
theory with only one material length scale parameter is employed to effectively
capture the size-dependent effects within the microplates. Meanwhile, the
quasi-3D theory which is constructed from a novel seventh-order shear
deformation refined plate theory with four unknowns is able to consider both
shear deformations and thickness stretching effect without requiring shear
correction factors. The NURBS-based isogeometric analysis is integrated to
exactly describe the geometry and approximately calculate the unknown fields
with higher-order derivative and continuity requirements. The convergence and
verification show the validity and efficiency of this proposed computational
approach in comparison with those existing in the literature. It is further
applied to study the static bending, free vibration and buckling responses of
rectangular and circular functionally graded microplates with various types of
boundary conditions. A number of investigations are also conducted to
illustrate the effects of the material length scale, material index, and
length-to-thickness ratios on the responses of the microplates.Comment: 57 pages, 14 figures, 18 table
Analisis Pengaruh Faktor Nilai, Citra, Kepuasan yang Dirasakan, Layanan Konsumen, Jaminan terhadap Loyalitas Konsumen Kecap ABC di Kota Palembang
This research aimed to 1) reveal how much the effect of value, image, satisfaction, customer services, and warranty on customer loyalty of ABC soya in Palembang, and 2) know dominant variables affecting the customer loyalty of ABC soya in Palembang. The method used in this study was causal method. The number of the samples are 120 respondents. The data collection techniques used are quesionaires, and interviews. And then, analyzed using multiple linier regression with statistical product for special solution (SPSS) for windows version 13,0.This research results indicated that factor of value, image, satisfaction, customer services, and warranty has positive effect on customer loyalty of ABC soya in Palembang that is 34.3%, the rest are caused by the others factor , and partially the factor of satisfaction had a dominant effects on costumer loyalty of ABC soya in Palembang
TGF-beta 1 induces human alveolar epithelial to mesenchymal cell transition (EMT)
Background: Fibroblastic foci are characteristic features in lung parenchyma of patients with idiopathic pulmonary fibrosis (IPF). They comprise aggregates of mesenchymal cells which underlie sites of unresolved epithelial injury and are associated with progression of fibrosis. However, the cellular origins of these mesenchymal phenotypes remain unclear. We examined whether the potent fibrogenic cytokine TGF-β1 could induce epithelial mesenchymal transition (EMT) in the human alveolar epithelial cell line, A549, and investigated the signaling pathway of TGF-β1-mediated EMT.
Methods: A549 cells were examined for evidence of EMT after treatment with TGF-β1. EMT was assessed by: morphology under phase-contrast microscopy; Western analysis of cell lysates for expression of mesenchymal phenotypic markers including fibronectin EDA (Fn-EDA), and expression of epithelial phenotypic markers including E-cadherin (E-cad). Markers of fibrogenesis, including collagens and connective tissue growth factor (CTGF) were also evaluated by measuring mRNA level using RT-PCR, and protein by immunofluorescence or Western blotting. Signaling pathways for EMT were characterized by Western analysis of cell lysates using monoclonal antibodies to detect phosphorylated Erk1/2 and Smad2 after TGF-β1 treatment in the presence or absence of MEK inhibitors. The role of Smad2 in TGF-β1-mediated EMT was investigated using siRNA.
Results: The data showed that TGF-β1, but not TNF-α or IL-1β, induced A549 cells with an alveolar epithelial type II cell phenotype to undergo EMT in a time-and concentration-dependent manner. The process of EMT was accompanied by morphological alteration and expression of the fibroblast phenotypic markers Fn-EDA and vimentin, concomitant with a downregulation of the epithelial phenotype marker E-cad. Furthermore, cells that had undergone EMT showed enhanced expression of markers of fibrogenesis including collagens type I and III and CTGF. MMP-2 expression was also evidenced. TGF-β1-induced EMT occurred through phosphorylation of Smad2 and was inhibited by Smad2 gene silencing; MEK inhibitors failed to attenuate either EMT-associated Smad2 phosphorylation or the observed phenotypic changes.
Conclusion: Our study shows that TGF-β1 induces A549 alveolar epithelial cells to undergo EMT via Smad2 activation. Our data support the concept of EMT in lung epithelial cells, and suggest the need for further studies to investigate the phenomenon
Toxic effect of high concentration of sonochemically synthesized polyvinylpyrrolidone-coated silver nanoparticles on Citrobacter sp. A1 and Enterococcus sp. C1
Background/Purpose Currently, silver nanoparticles (AgNPs) have gained importance in various industrial applications. However, their impact upon release into the environment on microorganisms remains unclear. The aim of this study was to analyze the effect of polyvinylpyrrolidone-capped AgNPs synthesized in this laboratory on two bacterial strains isolated from the environment, Gram-negative Citrobacter sp. A1 and Gram-positive Enterococcus sp. C1. Methods Polyvinylpyrrolidone-capped AgNPs were synthesized by ultrasound-assisted chemical reduction. Characterization of the AgNPs involved UV–visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. Citrobacter sp. A1 and Enterococcus sp. C1 were exposed to varying concentrations of AgNPs, and cell viability was determined. Scanning electron microscopy was performed to evaluate the morphological alteration of both species upon exposure to AgNPs at 1000 mg/L. Results The synthesized AgNPs were spherical in shape, with an average particle size of 15 nm. The AgNPs had different but prominent effects on either Citrobacter sp. A1 or Enterococcus sp. C1. At an AgNP concentration of 1000 mg/L, Citrobacter sp. A1 retained viability for 6 hours, while Enterococcus sp. C1 retained viability only for 3 hours. Citrobacter sp. A1 appeared to be more resistant to AgNPs than Enterococcus sp. C1. The cell wall of both strains was found to be morphologically altered at that concentration. Conclusion Minute and spherical AgNPs significantly affected the viability of the two bacterial strains selected from the environment. Enterococcus sp. C1 was more vulnerable to AgNPs, probably due to its cell wall architecture and the absence of silver resistance-related genes
Concentration of Heavy Metals on Roots, Stem and Leaves of Enhalus Acoroides, in Tunda Island, Banten Bay
Heavy metal pollution is one of serious problem for tropical mangrove ecosystem. Heavy metals can decrease the quality of a waters. The decreasing in water quality can caused by pollutants such as heavy metals with high concentrations greatly affects the aquatic environment, especially living organisms. The aimed of study is to determine the accumulation level of heavy metals such as Al, Cu, Pb, As, Ni, Cr, Ti, Mn, dan Fe, in root, leaves and stem of E. acoroides. The sampling was carried out in the northern and southern parts of Tunda Island, in March 2015. The method used for seagrass destruction is 6 mL 65% HNO3 and mL H2O2 30%, sediment destruction using Milestone Start D microwave labstation. and using ICP-OES (Inductive Coupled Plasma-Optical Emission Spectrometry) Thermo Scientific iCAP 700 Series. The result show that, the Al, was the dominant heavy metals observed both in sea water and sediment surrounding the observed sea grass areas. Similar result was also observed for seagrass. The dominant sediment grain size absorbing heavy metals is silt-clay because it has more organic matter to control the binding of heavy metals. Heavy metal bioaccumulation is predominant in seagrass leaves and stems due to heavy metal entry into seagrass, substance storage tissue, and seagrass characteristics that are completely submerged in water. Seagrass meadow ecosystem in Tunda Island has been contaminated by several heavy metals
- …
