4,617 research outputs found
Measurement of soil moisture using remote sensing multisensor radiation techniques
Theoretical modeling as well as laboratory and field measurement were coupled with analysis of aircraft data obtained from controlled sites in an effort to enhance understanding of the microwave response due to soil moisture so as to specify sensor parameters and develop inversion algorithms. Models to predict the complex dielectric constant were produced which led to the interpretation of the results in terms of a matrix potential rather than simply moisture content. Similar advances were made in the development of coherent and incoherent radiative transfer models and rough surface scattering models
Inversion algorithms for the microwave remote sensing of soil moisture. Experiments with swept frequency microwaves
Two experiments were performed employing swept frequency microwaves for the purpose of investigating the reflectivity from soil volumes containing both discontinuous and continuous changes in subsurface soil moisture content. Discontinuous moisture profiles were artificially created in the laboratory while continuous moisture profiles were induced into the soil of test plots by the environment of an agricultural field. The reflectivity for both the laboratory and field experiments was measured using bi-static reflectometers operated over the frequency ranges of 1.0 to 2.0 GHz and 4.0 to 8.0 GHz. Reflectivity models that considered the discontinuous and continuous moisture profiles within the soil volume were developed and compared with the results of the experiments. This comparison shows good agreement between the smooth surface models and the measurements. In particular the comparison of the smooth surface multi-layer model for continuous moisture profiles and the yield experiment measurements points out the sensitivity of the specular component of the scattered electromagnetic energy to the movement of moisture in the soil
Data documentation for the bare soil experiment at the University of Arkansas
The reflectivities of several controlled moisture test plots were investigated. These test plots were of a similar soil texture which was clay loam and were prepared to give a desired initial soil moisture and density profile. Measurements were conducted on the plots as the soil water redistributed for both long term and diurnal cycles. These measurements included reflectivity, gravimetric and volumetric soil moisture, soil moisture potential, and soil temperature
Precarious lives: Experiences of forced labour among refugees and asylum seekers in England
This research uncovered evidence that refugees and asylum seekers are susceptible to forced labour in the UK. The findings are based on a two-year study by academics at the Universities of Leeds and Salford, funded by the Economic and Social Research Council (ESRC). The research explored experiences of forced labour among 30 people who had made claims for asylum in England, supplemented by interviews with 23 practitioners and policy-makers
Latest results on Jovian disk X-rays from XMM-Newton
We present the results of a spectral study of the soft X-ray emission
(0.2-2.5 keV) from low-latitude (`disk') regions of Jupiter. The data were
obtained during two observing campaigns with XMM-Newton in April and November
2003. While the level of the emission remained approximately the same between
April and the first half of the November observation, the second part of the
latter shows an enhancement by about 40% in the 0.2-2.5 keV flux. A very
similar, and apparently correlated increase, in time and scale, was observed in
the solar X-ray and EUV flux.
The months of October and November 2003 saw a period of particularly intense
solar activity, which appears reflected in the behaviour of the soft X-rays
from Jupiter's disk. The X-ray spectra, from the XMM-Newton EPIC CCD cameras,
are all well fitted by a coronal model with temperatures in the range 0.4-0.5
keV, with additional line emission from Mg XI (1.35 keV) and Si XIII (1.86
keV): these are characteristic lines of solar X-ray spectra at maximum activity
and during flares.
The XMM-Newton observations lend further support to the theory that Jupiter's
disk X-ray emission is controlled by the Sun, and may be produced in large part
by scattering, elastic and fluorescent, of solar X-rays in the upper atmosphere
of the planet.Comment: 17 pages, 7 figures, accepted for publication in a special issue of
Planetary and Space Scienc
Evaluation of SIR-A space radar for geologic interpretation: United States, Panama, Colombia, and New Guinea
Comparisons between LANDSAT MSS imagery, and aircraft and space radar imagery from different geologic environments in the United States, Panama, Colombia, and New Guinea demonstrate the interdependence of radar system geometry and terrain configuration for optimum retrieval of geologic information. Illustrations suggest that in the case of space radars (SIR-A in particular), the ability to acquire multiple look-angle/look-direction radar images of a given area is more valuable for landform mapping than further improvements in spatial resolution. Radar look-angle is concluded to be one of the most important system parameters of a space radar designed to be used for geologic reconnaissance mapping. The optimum set of system parameters must be determined for imaging different classes of landform features and tailoring the look-angle to local topography
A protosolar nebula origin for the ices agglomerated by Comet 67P/Churyumov-Gerasimenko
The nature of the icy material accreted by comets during their formation in
the outer regions of the protosolar nebula is a major open question in
planetary science. Some scenarios of comet formation predict that these bodies
agglomerated from crystalline ices condensed in the protosolar nebula.
Concurrently, alternative scenarios suggest that comets accreted amorphous ice
originating from the interstellar cloud or from the very distant regions of the
protosolar nebula. On the basis of existing laboratory and modeling data, we
find that the N/CO and Ar/CO ratios measured in the coma of the Jupiter
family comet 67P/Churyumov-Gerasimenko by the ROSINA instrument aboard the
European Space Agency's Rosetta spacecraft match those predicted for gases
trapped in clathrates. If these measurements are representative of the bulk
N/CO and Ar/CO ratios in 67P/Churyumov-Gerasimenko, it implies that the
ices accreted by the comet formed in the nebula and do not originate from the
interstellar medium, supporting the idea that the building blocks of outer
solar system bodies have been formed from clathrates and possibly from pure
crystalline ices. Moreover, because 67P/Churyumov-Gerasimenko is impoverished
in Ar and N, the volatile enrichments observed in Jupiter's atmosphere
cannot be explained solely via the accretion of building blocks with similar
compositions and require an additional delivery source. A potential source may
be the accretion of gas from the nebula that has been progressively enriched in
heavy elements due to photoevaporation.Comment: The Astrophysical Journal Letters, in pres
A study of image quality for radar image processing
Methods developed for image quality metrics are reviewed with focus on basic interpretation or recognition elements including: tone or color; shape; pattern; size; shadow; texture; site; association or context; and resolution. Seven metrics are believed to show promise as a way of characterizing the quality of an image: (1) the dynamic range of intensities in the displayed image; (2) the system signal-to-noise ratio; (3) the system spatial bandwidth or bandpass; (4) the system resolution or acutance; (5) the normalized-mean-square-error as a measure of geometric fidelity; (6) the perceptual mean square error; and (7) the radar threshold quality factor. Selective levels of degradation are being applied to simulated synthetic radar images to test the validity of these metrics
Application of RHIZON samplers to obtain high-resolution pore-fluid records during geochemical investigations of gas hydrate systems
- …
