38,377 research outputs found

    Modeling Evolving Coronal Loops with Observations from STEREO, Hinode, and TRACE

    Full text link
    The high densities, long lifetimes, and narrow emission measure distributions observed in coronal loops with apex temperatures near 1 MK are difficult to reconcile with physical models of the solar atmosphere. It has been proposed that the observed loops are actually composed of sub-resolution ``threads'' that have been heated impulsively and are cooling. We apply this heating scenario to nearly simultaneous observations of an evolving post-flare loop arcade observed with the EUVI/\textit{STEREO}, XRT/\textit{Hinode}, and \textit{TRACE} imagers and the EIS spectrometer on \textit{HINODE}. We find that it is possible to reproduce the extended loop lifetime, high electron density, and the narrow differential emission measure with a multi-thread hydrodynamic model provided that the time scale for the energy release is sufficiently short. The model, however, does not reproduce the evolution of the very high temperature emission observed with XRT. In XRT the emission appears diffuse and it may be that this discrepancy is simply due to the difficulty of isolating individual loops at these temperatures. This discrepancy may also reflect fundamental problems with our understanding of post-reconnection dynamics during the conductive cooling phase of loop evolution.Comment: Revised version submitted to ApJ in response to referee's comment

    Space capsule ejection assembly Patent

    Get PDF
    Describing assembly for opening stabilizing and decelerating flaps of flight capsules used in space researc

    On the electrical double layer contribution to the interfacial tension of protein crystals

    Full text link
    We study the electrical double layer at the interface between a protein crystal and a salt solution or a dilute solution of protein, and estimate the double layer's contribution to the interfacial tension of this interface. This contribution is negative and decreases in magnitude with increasing salt concentration. We also consider briefly the interaction between a pair of protein surfaces.Comment: 6 pages, 3 figures, revtex

    Diffusiophoresis in non-adsorbing polymer solutions: the Asakura-Oosawa model and stratification in drying films

    Get PDF
    A colloidal particle placed in an inhomogeneous solution of smaller non-adsorbing polymers will move towards regions of lower polymer concentration, in order to reduce the free energy of the interface between the surface of the particle and the solution. This phenomenon is known as diffusiophoresis. Treating the polymer as penetrable hard spheres, as in the Asakura-Oosawa model, a simple analytic expression for the diffusiophoretic drift velocity can be obtained. In the context of drying films we show that diffusiophoresis by this mechanism can lead to stratification under easily accessible experimental conditions. By stratification we mean spontaneous formation of a layer of polymer on top of a layer of the colloid. Transposed to the case of binary colloidal mixtures, this offers an explanation for the stratification observed recently in these systems [A. Fortini et al, Phys. Rev. Lett. 116, 118301 (2016)]. Our results emphasise the importance of treating solvent dynamics explicitly in these problems, and caution against the neglect of hydrodynamic interactions or the use of implicit solvent models in which the absence of solvent backflow results in an unbalanced osmotic force which gives rise to large but unphysical effects.Comment: 11 pages, 6 figure
    corecore