653 research outputs found

    JPEG steganography with particle swarm optimization accelerated by AVX

    Get PDF
    Digital steganography aims at hiding secret messages in digital data transmitted over insecure channels. The JPEG format is prevalent in digital communication, and images are often used as cover objects in digital steganography. Optimization methods can improve the properties of images with embedded secret but introduce additional computational complexity to their processing. AVX instructions available in modern CPUs are, in this work, used to accelerate data parallel operations that are part of image steganography with advanced optimizations.Web of Science328art. no. e544

    Code wars: steganography, signals intelligence, and terrorism

    Get PDF
    This paper describes and discusses the process of secret communication known as steganography. The argument advanced here is that terrorists are unlikely to be employing digital steganography to facilitate secret intra-group communication as has been claimed. This is because terrorist use of digital steganography is both technically and operationally implausible. The position adopted in this paper is that terrorists are likely to employ low-tech steganography such as semagrams and null ciphers instead

    D’Agents: Security in a Multiple-Language, Mobile-Agent System

    Get PDF
    Abstract. Mobile-agent systems must address three security issues: protecting an individual machine, protecting a group of machines, and protecting an agent. In this chapter, we discuss these three issues in the context of D’Agents, a mobile-agent system whose agents can be written in Tcl, Java and Scheme. (D’Agents was formerly known as Agent Tcl.) First we discuss mechanisms existing in D’Agents for protecting an individual machine: (1) cryptographic authentication of the agent’s owner, (2) resource managers that make policy decisions based on the owner’s identity, and (3) secure execution environments for each language that enforce the decisions of the resource managers. Then we discuss our planned market-based approach for protecting machine groups. Finally we consider several (partial) solutions for protecting an agent from a malicious machine.

    The effect of the liquid-solid system properties on the interline heat transfer coefficient

    Get PDF
    A theoretical procedure to determine the heat transfer characteristics of the interline region of an evaporating meniscus using the macroscopic optical and thermophysical properties of the system is outlined. The analysis is based on the premise that the interline transport processes are controlled by the London-van der Waals forces between condensed phases (solid and liquid). The procedure is used to compare the relative size of the interline heat sink of various systems using a constant heat flux model. This solution demonstrates the importance of the interline heat flow number which is evaluated for various systems. The heat transfer characteristics of the decane-steel system are numerically compared with those of the carbon tetrachloride-quartz system

    The relation of steady evaporating drops fed by an influx and freely evaporating drops

    Full text link
    We discuss a thin film evolution equation for a wetting evaporating liquid on a smooth solid substrate. The model is valid for slowly evaporating small sessile droplets when thermal effects are insignificant, while wettability and capillarity play a major role. The model is first employed to study steady evaporating drops that are fed locally through the substrate. An asymptotic analysis focuses on the precursor film and the transition region towards the bulk drop and a numerical continuation of steady drops determines their fully non-linear profiles. Following this, we study the time evolution of freely evaporating drops without influx for several initial drop shapes. As a result we find that drops initially spread if their initial contact angle is larger than the apparent contact angle of large steady evaporating drops with influx. Otherwise they recede right from the beginning

    Mechanical tuning of the evaporation rate of liquid on crossed fibers

    Full text link
    We investigate experimentally the drying of a small volume of perfectly wetting liquid on two crossed fibers. We characterize the drying dynamics for the three liquid morphologies that are encountered in this geometry: drop, column and a mixed morphology, in which a drop and a column coexist. For each morphology, we rationalize our findings with theoretical models that capture the drying kinetics. We find that the evaporation rate depends significantly on the liquid morphology and that the drying of liquid column is faster than the evaporation of the drop and the mixed morphology for a given liquid volume. Finally, we illustrate that shearing a network of fibers reduces the angle between them, changes the morphology towards the column state, and so enhances the drying rate of a volatile liquid deposited on it

    An Electrochemical Study of Frustrated Lewis Pairs: A Metal-free Route to Hydrogen Oxidation

    Get PDF
    [Image: see text] Frustrated Lewis pairs have found many applications in the heterolytic activation of H(2) and subsequent hydrogenation of small molecules through delivery of the resulting proton and hydride equivalents. Herein, we describe how H(2) can be preactivated using classical frustrated Lewis pair chemistry and combined with in situ nonaqueous electrochemical oxidation of the resulting borohydride. Our approach allows hydrogen to be cleanly converted into two protons and two electrons in situ, and reduces the potential (the required energetic driving force) for nonaqueous H(2) oxidation by 610 mV (117.7 kJ mol(–1)). This significant energy reduction opens routes to the development of nonaqueous hydrogen energy technology

    Microcephaly in Pernambuco State, Brazil: epidemiological characteristics and evaluation of the diagnostic accuracy of cutoff points for reporting suspected cases.

    Get PDF
    The increase in the number of reported cases of microcephaly in Pernambuco State, and Northeast Brazil, characterized an epidemic that led the Brazilian Ministry of Health to declare a national public health emergency. The Brazilian Ministry of Health initially defined suspected cases as newborns with gestational age (GA) ≥ 37 weeks and head circumference (HC) ≤ 33cm, but in December 2015 this cutoff was lowered to 32cm. The current study aimed to estimate the accuracy, sensitivity, and specificity of different cutoff points for HC, using ROC curves, with the Fenton and Intergrowth (2014) curves as the gold standard. The study described cases reported in Pernambuco from August 8 to November 28, 2015, according to sex and GA categories. The Fenton and Intergrowth methods provide HC growth curves according to GA and sex, and microcephaly is defined as a newborn with HC below the 3rd percentile in these distributions. Of the 684 reported cases, 599 were term or post-term neonates. For these, the analyses with ROC curves show that according to the Fenton criterion the cutoff point with the largest area under the ROC curve, with sensitivity greater than specificity, is 32cm for both sexes. Using the Intergrowth method and following the same criteria, the cutoff points are 32cm and 31.5cm for males and females, respectively. The cutoff point identified by the Fenton method (32cm) coincided with the Brazilian Ministry of Health recommendation. Adopting Intergrowth as the standard, the choice would be 32cm for males and 31.5cm for females. The study identified the need to conduct critical and on-going analyses to evaluate cutoff points, including other characteristics for microcephaly case definition

    An augmented Young-Laplace model of an evaporating meniscus in a micro-channel with high heat flux

    Get PDF
    High flux evaporations from a steady meniscus formed in a 2 micron channel is modeled using the augmented Young-Laplace equation. The heat flux is found to be a function of the long range van der Waals dispersion force which represents interfacial conditions between heptane and various substrates. Heat fluxes of (1.3-1.6) x 10(exp 6) W/m(exp 2) based on the width of the channel are obtained for heptane completely wetting the substrate at 100 C. Small channels are used to obtain these large fluxes. Even though the real contact angle is 0 deg, the apparent contact angle is found to vary between 24.8 deg and 25.6 deg. The apparent contact angle, which represents viscous losses near the contact line, has a large effect on the heat flow rate because of its effect on capillary suction and the area of the meniscus. The interfacial heat flux is modeled using kinetic theory for the evaporation rate. The superheated state depends on the temperature and the pressure of the liquid phase. The liquid pressure differs from the pressure of the vapor phase due to capillarity and long range van der Waals dispersion forces which are relevant in the ultra think film formed at the leading edge of the meniscus. Important pressure gradients in the thin film cause a substantial apparent contact angle for a complete wetting system. The temperature of the liquid is related to the evaporation rate and to the substrate temperature through the steady heat conduction equation. Conduction in the liquid phase is calculated using finite element analysis except in the vicinity of the thin film. A lubrication theory solution for the thin film is combined with the finite element analysis by the method of matched asymptotic expansions
    corecore