68 research outputs found

    Quantification of recirculation as an adjuvant to transthoracic echocardiography for optimization of dual-lumen extracorporeal life support

    Get PDF
    Proper cannula positioning in single site veno-venous extracorporeal life support (vv-ELS) is cumbersome and necessitates image guidance to obtain a safe and stable position within the heart and the caval veins. Importantly, image-guided cannula positioning alone is not sufficient, as possible recirculation cannot be quantified. We present an ultrasound dilution technique allowing quantification of recirculation for optimizing vv-ELS. We suggest quantification of recirculation in addition to image guidance to provide optimal vv-ELS

    Quantitative assessment of cardiac load-responsiveness during extracorporeal life support: case and rationale

    Get PDF
    We describe a case of a patient assisted by extracorporeal life support, in which we obtained the dynamic filling index, a measure for venous volume during extracorporeal life support, and used this index to assess cardiac load-responsiveness during acute reloading. While reloading, the obtained findings on cardiac pump function by the dynamic filling index were supported by trans-esophageal echocardiography and standard pressure measurement. This suggests that the dynamic filling index can be used to assess cardiac load-responsiveness during extracorporeal life support

    Ethics of ECPR research

    Get PDF
    The design of emergency medicine trials can raise several ethical concerns - risks may be greater, and randomisation may have to occur before consent. Research in emergency medicine is thus an illuminating context to explore the interplay between risk and randomisation, and the consequences for consent. Using a currently running trial, we describe possible concerns, considerations, and solutions to reconcile the conflicting interests of scientific inquiry, ethical principles, and clinical reality in emergency medicine research

    Strategies to prevent intraoperative lung injury during cardiopulmonary bypass

    Get PDF
    During open heart surgery the influence of a series of factors such as cardiopulmonary bypass (CPB), hypothermia, operation and anaesthesia, as well as medication and transfusion can cause a diffuse trauma in the lungs. This injury leads mostly to a postoperative interstitial pulmonary oedema and abnormal gas exchange. Substantial improvements in all of the above mentioned factors may lead to a better lung function postoperatively. By avoiding CPB, reducing its time, or by minimizing the extracorporeal surface area with the use of miniaturized circuits of CPB, beneficial effects on lung function are reported. In addition, replacement of circuit surface with biocompatible surfaces like heparin-coated, and material-independent sources of blood activation, a better postoperative lung function is observed. Meticulous myocardial protection by using hypothermia and cardioplegia methods during ischemia and reperfusion remain one of the cornerstones of postoperative lung function. The partial restoration of pulmonary artery perfusion during CPB possibly contributes to prevent pulmonary ischemia and lung dysfunction. Using medication such as corticosteroids and aprotinin, which protect the lungs during CPB, and leukocyte depletion filters for operations expected to exceed 90 minutes in CPB-time appear to be protective against the toxic impact of CPB in the lungs. The newer methods of ultrafiltration used to scavenge pro-inflammatory factors seem to be protective for the lung function. In a similar way, reducing the use of cardiotomy suction device, as well as the contact-time between free blood and pericardium, it is expected that the postoperative lung function will be improved

    Commentary on: Can minimized cardiopulmonary bypass systems be safer?

    Full text link

    Non-Invasive Tissue Oximetry-An Integral Puzzle Piece

    No full text
    Non-invasive tissue oximetry is a monitoring method for continuous assessment of tissue oxygenation, which may aid in detection of hemodynamic instability and otherwise unnoticed hypoxia. Numerous studies focused on using non-invasive tissue oximetry intraoperatively, proposing its predictive value in relation to clinical outcome. Tissue oximetry may be part of standard monitoring practice for brain monitoring during cardiac surgery in many clinical centers; however, the monitoring method can be deployed in numerous clinical settings. This succinct overview aims to determine the role of non-invasive tissue oximetry in current clinical practice
    corecore