4,679 research outputs found

    Spin and chiral stiffness of the XY spin glass in two dimensions

    Full text link
    We analyze the zero-temperature behavior of the XY Edwards-Anderson spin glass model on a square lattice. A newly developed algorithm combining exact ground-state computations for Ising variables embedded into the planar spins with a specially tailored evolutionary method, resulting in the genetic embedded matching (GEM) approach, allows for the computation of numerically exact ground states for relatively large systems. This enables a thorough re-investigation of the long-standing questions of (i) extensive degeneracy of the ground state and (ii) a possible decoupling of spin and chiral degrees of freedom in such systems. The new algorithm together with appropriate choices for the considered sets of boundary conditions and finite-size scaling techniques allows for a consistent determination of the spin and chiral stiffness scaling exponents.Comment: 6 pages, 2 figures, proceedings of the HFM2006 conference, to appear in a special issue of J. Phys.: Condens. Matte

    A Bethe--Salpeter Description of Light Mesons

    Full text link
    We present a covariant approach to describe the low--lying scalar, pseudoscalar, vector and axialvector mesons as quark--antiquark bound states.This approach is based on an effective interaction modeling of the non--perturbative structure of the gluon propagator that enters the quark Schwinger--Dyson and meson Bethe--Salpeter equations. We extract the meson masses and compute the pion and kaon decay constants. We obtain a quantitatively correct description for pions, kaons and vector mesons while the calculated spectra of scalar and axialvector mesons suggest that their structure is more complex than being quark--antiquark bound states.Comment: Talk presented by HW at the international Scalar Meson Workshop, Utica, NY, May 2003; 12 pages, uses aip style file

    Heavy baryons with Strangeness in Soliton Models

    Full text link
    We present some recent results from soliton model calculations for the spectrum of baryons with a single heavy quark.The model comprises chiral symmetry for light flavors and (approximate) heavy spin-flavor symmetry for the heavy quarks. We focus on flavor symmetry breaking for strangeness degrees of freedom.Comment: Contribution to Hadron Structure 2015 Conferenc

    Enterprising Rural Families: Making It Work

    Get PDF
    Enterprising Rural Families (ERFTM) is an international course for the rural family in business. ERFTM teaches a process of finding success, resilience and satisfaction for rural families engaged in enterprises; including agriculture. Instructors from the United States, Canada and Australia have teamed together to offer this course that focuses on the three main components of a family business: individuals, the family unit and the business enterprise. This course also allows families in business to increase their awareness of cultural differences and similarities and improve their understanding of global issues. The course consists of written presentations, online chat sessions, threaded discussions, readings, videos, case studies and individual projects. Using these mechanisms, the online interaction provides rural families with both the tools and skills to resolve immediate family business issues and build a profitable business for the future.Consumer/Household Economics, Farm Management,

    Soliton Models for the Nucleon and Predictions for the Nucleon Spin Structure

    Get PDF
    In these lectures the three flavor soliton approach for baryons is reviewed. Effects of flavor symmetry breaking in the baryon wave--functions on axial current matrix elements are discussed. A bosonized chiral quark model is considered to outline the computation of spin dependent nucleon structure functions in the soliton picture.Comment: 12 pages, Lectures presented at the Advanced Study Institute Symmetry and Spin, Prague, 2001, to appear in the proceedings. References correcte

    Quantum stabilization of Z-strings, a status report on D=3+1 dimensions

    Full text link
    We investigate an extension to the phase shift formalism for calculating one-loop determinants. This extension is motivated by requirements of the computation of Z-string quantum energies in D=3+1 dimensions. A subtlety that seems to imply that the vacuum polarization diagram in this formalism is (erroneously) finite is thoroughly investigated.Comment: Based on talk by O.S. at QFEXT07, Leipzig Sept. 2007. 8 page

    Generalized Parton Distributions of the Pion

    Full text link
    Off-forward structure functions of the pion are investigated in twist-two and twist-three approximation. A simple model is used for the pion, which allows to introduce finite size effects, while preserving gauge invariance. Results for the imaginary parts of the gamma^* pi -> gamma^* pi off-forward amplitude and of the structure functions are presented. Generalized Callan-Gross relations are obtained.Comment: 4 pages, 5 figures, LaTeX, uses espcrc2.sty (included), presented at QCD03 Conference, Montpellier, France, July 200

    Cross-correlations in scaling analyses of phase transitions

    Get PDF
    Thermal or finite-size scaling analyses of importance sampling Monte Carlo time series in the vicinity of phase transition points often combine different estimates for the same quantity, such as a critical exponent, with the intent to reduce statistical fluctuations. We point out that the origin of such estimates in the same time series results in often pronounced cross-correlations which are usually ignored even in high-precision studies, generically leading to significant underestimation of statistical fluctuations. We suggest to use a simple extension of the conventional analysis taking correlation effects into account, which leads to improved estimators with often substantially reduced statistical fluctuations at almost no extra cost in terms of computation time.Comment: 4 pages, RevTEX4, 3 tables, 1 figur

    Broad application of a simple and affordable protocol for isolating plant RNA

    Get PDF
    BACKGROUND: Standard molecular biological methods involve the analysis of gene expression in living organisms under diverse environmental and developmental conditions. One of the most direct approaches to quantify gene expression is the isolation of RNA. Most techniques used to quantify gene expression require the isolation of RNA, usually from a large number of samples. While most published protocols, including those for commercial reagents, are either labour intensive, use hazardous chemicals and/or are costly, a previously published protocol for RNA isolation in Arabidopsis thaliana yields high amounts of good quality RNA in a simple, safe and inexpensive manner. FINDINGS: We have tested this protocol in tomato and wheat leaves, as well as in Arabidopsis leaves, and compared the resulting RNA to that obtained using a commercial phenol-based reagent. Our results demonstrate that this protocol is applicable to other plant species, including monocots, and offers yield and purity at least comparable to those provided by commercial phenol-based reagents. CONCLUSIONS: Here, we show that this previously published RNA isolation protocol can be easily extended to other plant species without further modification. Due to its simplicity and the use of inexpensive reagents, this protocol is accessible and affordable and can be easily implemented to work on different plant species in laboratories worldwide
    corecore