2,328 research outputs found

    Liquid-vapour phase behaviour of a symmetrical binary fluid mixture

    Full text link
    Using Monte-Carlo simulation and mean field calculations, we study the liquid-vapour phase diagram of a square well binary fluid mixture as a function of a parameter δ\delta measuring the relative strength of interactions between particles of dissimilar and similar species. The results reveal a rich variety of liquid-vapour coexistence behaviour as δ\delta is tuned. Specifically, we uncover critical end point behaviour, a triple point involving a vapour and two liquids of different density, and tricritical behaviour. For a certain range of δ\delta, the mean field calculations also predict a `hidden' (metastable) liquid-vapour binodal.Comment: Revtex, 8 figure

    Freezing line of the Lennard-Jones fluid: a Phase Switch Monte Carlo study

    Full text link
    We report a Phase Switch Monte Carlo (PSMC) method study of the freezing line of the Lennard-Jones (LJ) fluid. Our work generalizes to soft potentials the original application of the method to hard sphere freezing, and builds on a previous PSMC study of the LJ system by Errington (J. Chem. Phys. {\bf 120}, 3130 (2004)). The latter work is extended by tracing a large section of the Lennard-Jones freezing curve, the results for which we compare to a previous Gibbs-Duhem integration study. Additionally we provide new background regarding the statistical mechanical basis of the PSMC method and extensive implementation details.Comment: 18 pages, 6 figure

    Three-body interactions in complex fluids: virial coefficients from simulation finite-size effects

    Get PDF
    A simulation technique is described for quantifying the contribution of three-body interactions to the thermodynamical properties of coarse-grained representations of complex fluids. The method is based on comparing the third virial coefficient B3B_3 for a complex fluid with that of an approximate coarse-grained model described by a pair potential. To obtain B3B_3 we introduce a new technique which expresses its value in terms of the measured volume-dependent asymptote of a certain structural function. The strategy is applicable to both Molecular Dynamics and Monte Carlo simulation. Its utility is illustrated via measurements of three-body effects in models of star polymer and highly size-asymmetrical colloid-polymer mixtures.Comment: 13 pages, 8 figure

    Effects of weak surface fields on the density profiles and adsorption of a confined fluid near bulk criticality

    Full text link
    The density profile and Gibbs adsorption of a near-critical fluid confined between two identical planar walls is studied by means of Monte Carlo simulation and by density functional theory for a Lennard-Jones fluid. By reducing the strength of wall-fluid interactions relative to fluid-fluid interactions we observe a crossover from behaviour characteristic of the normal surface universality class, strong critical adsorption, to behaviour characteristic of a 'neutral' wall. The crossover is reminiscent of that which occurs near the ordinary surface transition in Ising films subject to vanishing surface fields. For the 'neutral' wall the density profile, away from the walls, is almost constant throughout the slit capillary and gives rise to an adsorption that is constant along the critical isochore. The same 'neutral' wall yields a line of capillary coexistence that is almost identical to the bulk coexistence line. In the crossover regime we observe features in the density profile similar to those found in the magnetisation profile of the critical Ising film subject to weak surface fields, namely two smooth maxima, located away from the walls, which merge into a single maximum at midpoint as the strength of the wall-fluid interaction is reduced or as the distance between walls is decreased. We discuss similarities and differences between the surface critical behaviour of fluids and of Ising magnets.Comment: 34 pages, 10 figures, submitted to the Journ. Chem. Phy

    Enthalpies of formation of lanthanide oxyapatite phases

    Get PDF
    A family of lanthanide silicates adopts an oxyapatite-like structure with structural formula Ln9.33∎0.67(SiO4)6O2 (Ln 4 La, Sm, Nd, Gd, ∎ = vacancy). The enthalpies of solution, DHS, for these materials and their corresponding binary oxides were determined by high-temperature oxide melt solution calorimetry using molten 2PbO·B2O3 at 1078 K. These data were used to complete thermodynamic cycles to calculate enthalpies of formation from the oxides, ΔHs f-oxides (kJ/mol): La9.33∎0.67(SiO4)6O2 = −776.3 ± 17.9, Nd9.33∎0.67(SiO4)6O2 = −760.4 ± 31.9, Sm9.33∎0.67(SiO4)6O2 = −590.3 ± 18.6, and Gd9.33∎0.67(SiO4)6O2 = −446.9 ± 21.9. Reference data were used to calculate the standard enthalpies of formation from the elements, ΔH0 f (kJ/mol): La9.33∎0.67(SiO4)6O2 = −14611.0 ± 19.4, Nd9.33∎0.67(SiO4)6O2 = −14661.5 ± 32.2, Sm9.33∎0.67(SiO4)6O2 = −14561.7 ± 20.8, and Gd9.33∎0.67(SiO4)6O2 = −14402.7 ± 28.2. The formation enthalpies become more endothermic as the ionic radius of the lanthanide ion decreases

    Distribution and Implications of Sponge Spicules in Surficial Deposits in Ohio

    Get PDF
    Author Institution: Agronomy Department, The Ohio State University, Columbus, OhioMicroscopic examination of biogenic opal isolated from the 0.05-0.02-mm total mineral fraction of 12 upland soil profiles indicates that fragments of sponge spicules are minor but ubiquitous constituents of Ohio soils, with major concentrations in the upper 10 to 15 inches of the profile. Quantities range from about 30 to 2000 parts per million biogenic opal or 1 to 65 parts per 10 million parts soil. Spicules are absent or extremely rare in calcareous Wisconsin-age till deposits. Their correlation with horizons high in silt content (50-75%), and their size and depth distribution in landscape positions which preclude an authigenic origin, indicate their aeolian transport from aquatic source areas with other loessial materials. Identification of spicules thus provides direct evidence that these horizons have been derived from loess or loess-till admixtures. This microscopic technique may serve useful for the identification of loess when field or laboratory particle-size analysis yields inconclusive evidence

    Monte Carlo cluster algorithm for fluid phase transitions in highly size-asymmetrical binary mixtures

    Get PDF
    Highly size-asymmetrical fluid mixtures arise in a variety of physical contexts, notably in suspensions of colloidal particles to which much smaller particles have been added in the form of polymers or nanoparticles. Conventional schemes for simulating models of such systems are hamstrung by the difficulty of relaxing the large species in the presence of the small one. Here we describe how the rejection-free geometrical cluster algorithm (GCA) of Liu and Luijten [Phys. Rev. Lett 92, 035504 (2004)] can be embedded within a restricted Gibbs ensemble to facilitate efficient and accurate studies of fluid phase behavior of highly size-asymmetrical mixtures. After providing a detailed description of the algorithm, we summarize the bespoke analysis techniques of Ashton et al. [J. Chem. Phys. 132, 074111 (2010)] that permit accurate estimates of coexisting densities and critical-point parameters. We apply our methods to study the liquid--vapor phase diagram of a particular mixture of Lennard-Jones particles having a 10:1 size ratio. As the reservoir volume fraction of small particles is increased in the range 0--5%, the critical temperature decreases by approximately 50%, while the critical density drops by some 30%. These trends imply that in our system, adding small particles decreases the net attraction between large particles, a situation that contrasts with hard-sphere mixtures where an attractive depletion force occurs.Comment: 11 pages, 10 figure

    Wetting of a symmetrical binary fluid mixture on a wall

    Full text link
    We study the wetting behaviour of a symmetrical binary fluid below the demixing temperature at a non-selective attractive wall. Although it demixes in the bulk, a sufficiently thin liquid film remains mixed. On approaching liquid/vapour coexistence, however, the thickness of the liquid film increases and it may demix and then wet the substrate. We show that the wetting properties are determined by an interplay of the two length scales related to the density and the composition fluctuations. The problem is analysed within the framework of a generic two component Ginzburg-Landau functional (appropriate for systems with short-ranged interactions). This functional is minimized both numerically and analytically within a piecewise parabolic potential approximation. A number of novel surface transitions are found, including first order demixing and prewetting, continuous demixing, a tricritical point connecting the two regimes, or a critical end point beyond which the prewetting line separates a strongly and a weakly demixed film. Our results are supported by detailed Monte Carlo simulations of a symmetrical binary Lennard-Jones fluid at an attractive wall.Comment: submitted to Phys. Rev.

    Phase behaviour and particle-size cutoff effects in polydisperse fluids

    Full text link
    We report a joint simulation and theoretical study of the liquid-vapor phase behaviour of a fluid in which polydispersity in the particle size couples to the strength of the interparticle interactions. Attention is focussed on the case in which the particles diameters are distributed according to a fixed Schulz form with degree of polydispersity δ=14\delta=14%. The coexistence properties of this model are studied using grand canonical ensemble Monte Carlo simulations and moment free energy calculations. We obtain the cloud and shadow curves as well as the daughter phase density distributions and fractional volumes along selected isothermal dilution lines. In contrast to the case of size-{\em independent} interaction strengths (N.B. Wilding, M. Fasolo and P. Sollich, J. Chem. Phys. {\bf 121}, 6887 (2004)), the cloud and shadow curves are found to be well separated, with the critical point lying significantly below the cloud curve maximum. For densities below the critical value, we observe that the phase behaviour is highly sensitive to the choice of upper cutoff on the particle size distribution. We elucidate the origins of this effect in terms of extremely pronounced fractionation effects and discuss the likely appearance of new phases in the limit of very large values of the cutoff.Comment: 12 pages, 15 figure
    corecore