215 research outputs found

    Remnant lipoproteins inhibit malaria sporozoite invasion of hepatocytes

    Get PDF
    Remnants of lipoproteins, intestinal chylomicrons, and very low density lipoprotein (VLDL), are rapidly cleared from plasma and enter hepatocytes. It has been suggested that remnant lipoproteins are initially captured in the space of Disse by heparan sulfate proteoglycans (HSPGs), and that their subsequent internalization into hepatocytes is mediated by members of the LDL-receptor gene family. Similarly to lipoprotein remnants, malaria sporozoites are removed from the blood circulation by the liver within minutes after injection by Anopheles mosquitoes. The sporozoite's surface is covered by the circumsporozoite protein (CS), and its region II-plus has been implicated in the binding of the parasites to glycosaminoglycan chains of hepatocyte HSPGs. Lactoferrin, a protein with antibacterial properties found in breast milk and neutrophil granules, is also rapidly cleared from the circulation by hepatocytes, and can inhibit the hepatic uptake of lipoprotein remnants. Here we provide evidence that sporozoites, lactoferrin, and remnant lipoproteins are cleared from the blood by similar mechanisms. CS, lactoferrin, and remnant lipoproteins compete in vitro and in vivo for binding sites on liver cells. The relevance of this binding event for sporozoite infectivity is highlighted by our demonstration that apoliprotein E-enriched beta-VLDI and lactoferrin inhibit sporozoite invasion of HepG2 cells. In addition, malaria sporozoites are less infective in LDL-receptor knockout (LDLR -/-) mice maintained on a high fat diet, as compared with littermates maintained on a normal diet. We conclude that the clearance of lipoprotein remnants and sporozoites from the blood is mediated by the same set of highly sulfated HSPGs on the hepatocyte plasma membrane

    Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology

    Get PDF
    A recent genome-wide association meta-analysis for Alzheimer's disease (AD) identified 19 risk loci (in addition to APOE) in which the functional genes are unknown. Using Drosophila, we screened 296 constructs targeting orthologs of 54 candidate risk genes within these loci for their ability to modify Tau neurotoxicity by quantifying the size of >6000 eyes. Besides Drosophila Amph (ortholog of BIN1), which we previously implicated in Tau pathology, we identified p130CAS (CASS4), Eph (EPHA1), Fak (PTK2B) and Rab3-GEF (MADD) as Tau toxicity modulators. Of these, the focal adhesion kinase Fak behaved as a strong Tau toxicity suppressor in both the eye and an independent focal adhesion-related wing blister assay. Accordingly, the human Tau and PTK2B proteins biochemically interacted in vitro and PTK2B co-localized with hyperphosphorylated and oligomeric Tau in progressive pathological stages in the brains of AD patients and transgenic Tau mice. These data indicate that PTK2B acts as an early marker and in vivo modulator of Tau toxicity

    The effect of maternal undernutrition on the rat placental transcriptome: protein restriction up-regulates cholesterol transport

    Get PDF
    Fetal exposure to a maternal low protein diet during rat pregnancy is associated with hypertension, renal dysfunction and metabolic disturbance in adult life. These effects are present when dietary manipulations target only the first half of pregnancy. It was hypothesised that early gestation protein restriction would impact upon placental gene expression and that this may give clues to the mechanism which links maternal diet to later consequences. Pregnant rats were fed control or a low protein diet from conception to day 13 gestation. Placentas were collected and RNA Sequencing performed using the Illumina platform. Protein restriction down-regulated 67 genes and up-regulated 24 genes in the placenta. Ingenuity pathway analysis showed significant enrichment in pathways related to cholesterol and lipoprotein transport and metabolism, including atherosclerosis signalling, clathrin-mediated endocytosis, LXR/RXR and FXR/RXR activation. Genes at the centre of these processes included the apolipoproteins ApoB, ApoA2 and ApoC2, microsomal triglyceride transfer protein (Mttp), the clathrin-endocytosis receptor cubilin, the transcription factor retinol binding protein 4 (Rbp4) and transerythrin (Ttr; a retinol and thyroid hormone transporter). Real-time PCR measurements largely confirmed the findings of RNASeq and indicated that the impact of protein restriction was often striking (cubilin up-regulated 32-fold, apoC2 up-regulated 17.6-fold). The findings show that gene expression in specific pathways is modulated by maternal protein restriction in the day-13 rat placenta. Changes in cholesterol transport may contribute to altered tissue development in the fetus and hence programme risk of disease in later life

    SORCS2 activity in pancreatic α-cells safeguards insulin granule formation and release from glucose-stressed β-cells

    Get PDF
    Sorting receptor SORCS2 is a stress-response factor protecting neurons from acute insults, such as during epilepsy. SORCS2 is also expressed in the pancreas, yet its action in this tissue remains unknown. Combining metabolic studies in SORCS2-deficient mice with ex vivo functional analyses and single-cell transcriptomics of pancreatic tissues, we identified a role for SORCS2 in protective stress response in pancreatic islets, essential to sustain insulin release. We show that SORCS2 is predominantly expressed in islet alpha cells. Loss of expression coincides with inability of these cells to produce osteopontin, a secreted factor that facilitates insulin release from stressed beta cells. In line with diminished osteopontin levels, beta cells in SORCS2-deficient islets show gene expression patterns indicative of aggravated cell stress, and exhibit defects in insulin granule maturation and a blunted glucose response. These findings corroborate a function for SORCS2 in protective stress response that extends to metabolism

    Retromer binds the FANSHY sorting motif in SorLA to regulate amyloid precursor protein sorting and processing

    Get PDF
    sorLA is a sorting receptor for amyloid precursor protein (APP) genetically linked to Alzheimer's disease (AD). Retromer, an adaptor complex in the endosome-to-Golgi retrieval pathway, has been implicated in APP transport because retromer deficiency leads to aberrant APP sorting and processing and levels of retromer proteins are altered in AD. Here we report that sorLA and retromer functionally interact in neurons to control trafficking and amyloidogenic processing of APP. We have identified a sequence (FANSHY) in the cytoplasmic domain of sorLA that is recognized by the VPS26 subunit of the retromer complex. Accordingly, we characterized the interaction between the retromer complex and sorLA and determined the role of retromer on sorLA-dependent sorting and processing of APP. Mutations in the VPS26 binding site resulted in receptor redistribution to the endosomal network, similar to the situation seen in cells with VPS26 knockdown. The sorLA mutant retained APP-binding activity but, as opposed to the wild-type receptor, misdirected APP into a distinct non-Golgi compartment, resulting in increased amyloid processing. In conclusion, our data provide a molecular link between reduced retromer expression and increased amyloidogenesis as seen in patients with sporadic AD

    SorCS2 facilitates release of endostatin from astrocytes and controls post-stroke angiogenesis

    Get PDF
    SorCS2 is an intracellular sorting receptor of the VPS10P domain receptor gene family recently implicated in oxidative stress response. Here, we interrogated the relevance of stress-related activities of SorCS2 in the brain by exploring its role in ischemic stroke in mouse models and in patients. Although primarily seen in neurons in the healthy brain, expression of SorCS2 was massively induced in astrocytes surrounding the ischemic core in mice following stroke. Post-stroke induction was likely a result of increased levels of transforming growth factor β1 in damaged brain tissue, inducing Sorcs2 gene transcription in astrocytes but not neurons. Induced astrocytic expression of SorCS2 was also seen in stroke patients, substantiating the clinical relevance of this observation. In astrocytes in vitro and in the mouse brain in vivo, SorCS2 specifically controlled release of endostatin, a factor linked to post-stroke angiogenesis. The ability of astrocytes to release endostatin acutely after stroke was lost in mice deficient for SorCS2, resulting in a blunted endostatin response which coincided with impaired vascularization of the ischemic brain. Our findings identified activated astrocytes as a source for endostatin in modulation of post-stroke angiogenesis, and the importance of the sorting receptor SorCS2 in this brain stress response

    Low Density Lipoprotein Receptor-Related Protein 1 Dependent Endosomal Trapping and Recycling of Apolipoprotein E

    Get PDF
    BACKGROUND: Lipoprotein receptors from the low density lipoprotein (LDL) receptor family are multifunctional membrane proteins which can efficiently mediate endocytosis and thereby facilitate lipoprotein clearance from the plasma. The biggest member of this family, the LDL receptor-related protein 1 (LRP1), facilitates the hepatic uptake of triglyceride-rich lipoproteins (TRL) via interaction with apolipoprotein E (apoE). In contrast to the classical LDL degradation pathway, TRL disintegrate in peripheral endosomes, and core lipids and apoB are targeted along the endocytic pathway for lysosomal degradation. Notably, TRL-derived apoE remains within recycling endosomes and is then mobilized by high density lipoproteins (HDL) for re-secretion. The aim of this study is to investigate the involvement of LRP1 in the regulation of apoE recycling. PRINCIPAL FINDINGS: Immunofluorescence studies indicate the LRP1-dependent trapping of apoE in EEA1-positive endosomes in human hepatoma cells. This processing is distinct from other LRP1 ligands such as RAP which is efficiently targeted to lysosomal compartments. Upon stimulation of HDL-induced recycling, apoE is released from LRP1-positive endosomes but is targeted to another, distinct population of early endosomes that contain HDL, but not LRP1. For subsequent analysis of the recycling capacity, we expressed the full-length human LRP1 and used an RNA interference approach to manipulate the expression levels of LRP1. In support of LRP1 determining the intracellular fate of apoE, overexpression of LRP1 significantly stimulated HDL-induced apoE recycling. Vice versa LRP1 knockdown in HEK293 cells and primary hepatocytes strongly reduced the efficiency of HDL to stimulate apoE secretion. CONCLUSION: We conclude that LRP1 enables apoE to accumulate in an early endosomal recycling compartment that serves as a pool for the intracellular formation and subsequent re-secretion of apoE-enriched HDL particles

    Amyloid-β aggregates activate peripheral monocytes in mild cognitive impairment

    Get PDF
    \ua9 The Author(s) 2024. The peripheral immune system is important in neurodegenerative diseases, both in protecting and inflaming the brain, but the underlying mechanisms remain elusive. Alzheimer’s Disease is commonly preceded by a prodromal period. Here, we report the presence of large Aβ aggregates in plasma from patients with mild cognitive impairment (n = 38). The aggregates are associated with low level Alzheimer’s Disease-like brain pathology as observed by 11C-PiB PET and 18F-FTP PET and lowered CD18-rich monocytes. We characterize complement receptor 4 as a strong binder of amyloids and show Aβ aggregates are preferentially phagocytosed and stimulate lysosomal activity through this receptor in stem cell-derived microglia. KIM127 integrin activation in monocytes promotes size selective phagocytosis of Aβ. Hydrodynamic calculations suggest Aβ aggregates associate with vessel walls of the cortical capillaries. In turn, we hypothesize aggregates may provide an adhesion substrate for recruiting CD18-rich monocytes into the cortex. Our results support a role for complement receptor 4 in regulating amyloid homeostasis

    LRP1 Receptor Controls Adipogenesis and Is Up-Regulated In Human and Mouse Obese Adipose Tissue

    Get PDF
    The cell surface low-density lipoprotein receptor-related protein 1, LRP1, plays a major role in lipid metabolism. The question that remains open concerns the function of LRP1 in adipogenesis. Here, we show that LRP1 is highly expressed in murine preadipocytes as well as in primary culture of human adipocytes. Moreover, LRP1 remains abundantly synthesised during mouse and human adipocyte differentiation. We demonstrate that LRP1 silencing in 3T3F442A murine preadipocytes significantly inhibits the expression of PPARγ, HSL and aP2 adipocyte differentiation markers after adipogenesis induction, and leads to lipid-depleted cells. We further show that the absence of lipids in LRP1-silenced preadipocytes is not caused by lipolysis induction. In addition, we provide the first evidences that LRP1 is significantly up-regulated in obese C57BI6/J mouse adipocytes and obese human adipose tissues. Interestingly, silencing of LRP1 in fully-differentiated adipocytes also reduces cellular lipid level and is associated with an increase of basal lipolysis. However, the ability of mature adipocytes to induce lipolysis is independent of LRP1 expression. Altogether, our findings highlight the dual role of LRP1 in the control of adipogenesis and lipid homeostasis, and suggest that LRP1 may be an important therapeutic target in obesity

    Quantitative model of R-loop forming structures reveals a novel level of RNA–DNA interactome complexity

    Get PDF
    R-loop is the structure co-transcriptionally formed between nascent RNA transcript and DNA template, leaving the non-transcribed DNA strand unpaired. This structure can be involved in the hyper-mutation and dsDNA breaks in mammalian immunoglobulin (Ig) genes, oncogenes and neurodegenerative disease related genes. R-loops have not been studied at the genome scale yet. To identify the R-loops, we developed a computational algorithm and mapped R-loop forming sequences (RLFS) onto 66 803 sequences defined by UCSC as ‘known’ genes. We found that ∼59% of these transcribed sequences contain at least one RLFS. We created R-loopDB (http://rloop.bii.a-star.edu.sg/), the database that collects all RLFS identified within over half of the human genes and links to the UCSC Genome Browser for information integration and visualisation across a variety of bioinformatics sources. We found that many oncogenes and tumour suppressors (e.g. Tp53, BRCA1, BRCA2, Kras and Ptprd) and neurodegenerative diseases related genes (e.g. ATM, Park2, Ptprd and GLDC) could be prone to significant R-loop formation. Our findings suggest that R-loops provide a novel level of RNA–DNA interactome complexity, playing key roles in gene expression controls, mutagenesis, recombination process, chromosomal rearrangement, alternative splicing, DNA-editing and epigenetic modifications. RLFSs could be used as a novel source of prospective therapeutic targets
    corecore