2,232 research outputs found

    Detection of Multi-Layer and Vertically-Extended Clouds Using A-Train Sensors

    Get PDF
    The detection of mUltiple cloud layers using satellite observations is important for retrieval algorithms as well as climate applications. In this paper, we describe a relatively simple algorithm to detect multiple cloud layers and distinguish them from vertically-extended clouds. The algorithm can be applied to coincident passive sensors that derive both cloud-top pressure from the thermal infrared observations and an estimate of solar photon pathlength from UV, visible, or near-IR measurements. Here, we use data from the A-train afternoon constellation of satellites: cloud-top pressure, cloud optical thickness, the multi-layer flag from the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) and the optical centroid cloud pressure from the Aura Ozone Monitoring Instrument (OMI). For the first time, we use data from the CloudSat radar to evaluate the results of a multi-layer cloud detection scheme. The cloud classification algorithms applied with different passive sensor configurations compare well with each other as well as with data from CloudSat. We compute monthly mean fractions of pixels containing multi-layer and vertically-extended clouds for January and July 2007 at the OMI spatial resolution (l2kmx24km at nadir) and at the 5kmx5km MODIS resolution used for infrared cloud retrievals. There are seasonal variations in the spatial distribution of the different cloud types. The fraction of cloudy pixels containing distinct multi-layer cloud is a strong function of the pixel size. Globally averaged, these fractions are approximately 20% and 10% for OMI and MODIS, respectively. These fractions may be significantly higher or lower depending upon location. There is a much smaller resolution dependence for fractions of pixels containing vertically-extended clouds (approx.20% for OMI and slightly less for MODIS globally), suggesting larger spatial scales for these clouds. We also find higher fractions of vertically-extended clouds over land as compared with ocean, particularly in the tropics and summer hemisphere

    Multi-sensor Cloud Retrieval Simulator and Remote Sensing from Model Parameters

    Get PDF
    In this paper we describe a general procedure for calculating synthetic sensor radiances from variable output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint, the algorithm takes explicit account of the model subgrid variability, in particular its description of the probability density function of total water (vapor and cloud condensate.) The simulated sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies.We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products). We focus on clouds because they are very important to model development and improvement

    Single-Walled Carbon Nanotubes as Shadow Masks for Nanogap Fabrication

    Full text link
    We describe a technique for fabricating nanometer-scale gaps in Pt wires on insulating substrates, using individual single-walled carbon nanotubes as shadow masks during metal deposition. More than 80% of the devices display current-voltage dependencies characteristic of direct electron tunneling. Fits to the current-voltage data yield gap widths in the 0.8-2.3 nm range for these devices, dimensions that are well suited for single-molecule transport measurements

    Spin dynamics of the S=1/2 antiferromagnetic zig-zag ladder with anisotropy

    Full text link
    We use exact diagonalization and the modified Lanczos method to study the finite energy and finite momentum spectral weight of the longitudinal and transverse spin excitations of the anisotropic zig-zag ladder. We find that the spin excitations form continua of gapless or gapped spinons in the different regions of the phase diagram. The results obtained are consistent with a picture previously proposed that in the anisotropic case there is a transition from a gapped regime to a gapless regime, for small interchain coupling. In this regime we find a sharp low-energy peak in the structure function for the transverse spin excitations, consistent with a finite stiffness.Comment: 17 figure

    Denial at the top table: status attributions and implications for marketing

    Get PDF
    Senior marketing management is seldom represented on the Board of Directors nowadays, reflecting a deteriorating status of the marketing profession. We examine some of the key reasons for marketing’s demise, and discuss how the status of marketing may be restored by demonstrating the value of marketing to the business community. We attribute marketing’s demise to several related key factors: narrow typecasting, marginalisation and limited involvement in product development, questionable marketing curricula, insensitivity toward environmental change, questionable professional standards and roles, and marketing’s apparent lack of accountability to CEOs. Each of these leads to failure to communicate, create, or deliver value within marketing. We argue that a continued inability to deal with marketing’s crisis of representation will further erode the status of the discipline both academically and professionally

    Decoupling of the S=1/2 antiferromagnetic zig-zag ladder with anisotropy

    Full text link
    The spin-1/2 antiferromagnetic zig-zag ladder is studied by exact diagonalization of small systems in the regime of weak inter-chain coupling. A gapless phase with quasi long-range spiral correlations has been predicted to occur in this regime if easy-plane (XY) anisotropy is present. We find in general that the finite zig-zag ladder shows three phases: a gapless collinear phase, a dimer phase and a spiral phase. We study the level crossings of the spectrum,the dimer correlation function, the structure factor and the spin stiffness within these phases, as well as at the transition points. As the inter-chain coupling decreases we observe a transition in the anisotropic XY case from a phase with a gap to a gapless phase that is best described by two decoupled antiferromagnetic chains. The isotropic and the anisotropic XY cases are found to be qualitatively the same, however, in the regime of weak inter-chain coupling for the small systems studied here. We attribute this to a finite-size effect in the isotropic zig-zag case that results from exponentially diverging antiferromagnetic correlations in the weak-coupling limit.Comment: to appear in Physical Review

    Dephasing of Electrons by Two-Level Defects in Quantum Dots

    Full text link
    The electron dephasing time τϕ\tau_{\phi} in a diffusive quantum dot is calculated by considering the interaction between the electron and dynamical defects, modelled as two-level system. Using the standard tunneling model of glasses, we obtain a linear temperature dependence of 1/τϕ1/\tau_{\phi}, consistent with the experimental observation. However, we find that, in order to obtain dephasing times on the order of nanoseconds, the number of two-level defects needs to be substantially larger than the typical concentration in glasses. We also find a finite system-size dependence of τϕ\tau_{\phi}, which can be used to probe the effectiveness of surface-aggregated defects.Comment: two-column 9 page

    Checks and Balances in Autoimmune Vasculitis

    Get PDF
    Age-associated changes in the immune system including alterations in surface protein expression are thought to contribute to an increased susceptibility for autoimmune diseases. The balance between the expression of coinhibitory and costimulatory surface protein molecules, also known as immune checkpoint molecules, is crucial in fine-tuning the immune response and preventing autoimmunity. The activation of specific inhibitory signaling pathways allows cancer cells to evade recognition and destruction by the host immune system. The use of immune checkpoint inhibitors (ICIs) to treat cancer has proven to be effective producing durable antitumor responses in multiple cancer types. However, one of the disadvantages derived from the use of these agents is the appearance of inflammatory manifestations termed immune-related adverse events (irAEs). These irAEs are often relatively mild, but more severe irAEs have been reported as well including several forms of vasculitis. In this article, we argue that age-related changes in expression and function of immune checkpoint molecules lead to an unstable immune system, which is prone to tolerance failure and autoimmune vasculitis development. The topic is introduced by a case report from our hospital describing a melanoma patient treated with ICIs and who subsequently developed biopsy-proven giant cell arteritis. Following this case report, we present an in-depth review on the role of immune checkpoint pathways in the development and progression of autoimmune vasculitis and its relation with an aging immune system

    UK Large-scale Wind Power Programme from 1970 to 1990: the Carmarthen Bay experiments and the Musgrove Vertical-Axis Turbines

    Get PDF
    This article describes the development of the Musgrove Vertical Axis Wind Turbine (VAWT) concept, the UK ‘Carmarthen Bay’ wind turbine test programme, and UK government’s wind power programme to 1990. One of the most significant developments in the story of British wind power occurred during the 1970s, 1980s, and 1990s, with the development of the Musgrove vertical axis wind turbine and its inclusion within the UK Government’s wind turbine test programme. Evolving from a supervisor’s idea for an undergraduate project at Reading University, the Musgrove VAWT was once seen as an able competitor to the horizontal axis wind systems that were also being encouraged at the time by both the UK government and the Central Electricity Generating Board, the then nationalised electricity utility for England and Wales. During the 1980s and 1990s the most developed Musgrove VAWT system, along with three other commercial turbine designs was tested at Carmarthen Bay, South Wales as part of a national wind power test programme. From these developmental tests, operational data was collected and lessons learnt, which were incorporated into subsequent wind power operations.http://dx.doi.org/10.1260/03095240677860621

    Probing interactions in mesoscopic gold wires

    Full text link
    We have measured in gold wires the energy exchange rate between quasiparticles, the phase coherence time of quasiparticles and the resistance vs. temperature, in order to probe the interaction processes which are relevant at low temperatures. We find that the energy exchange rate is higher than expected from the theory of electron-electron interactions, and that it has a different energy dependence. The dephasing time is constant at temperatures between 8 K and 0.5 K, and it increases below 0.5 K. The magnetoresistance is negative at large field scales, and the resistance decreases logarithmically with increasing temperatures, indicating the presence of magnetic impurities, probably Fe. Whereas resistivity and phase coherence measurements can be attributed to magnetic impurities, the question is raised whether these magnetic impurities could also mediate energy exchanges between quasiparticles.Comment: latex pothier.tex, 12 files, 15 pages in: Proceedings of the NATO Advanced Research Workshop on Size Dependent Magnetic Scattering, Pesc, Hungary, May 28 - June 1st, 2000 Chandrasekhar V., Van Haesendonck C. eds (Kluwer, 2001) [SPEC-S00/083
    corecore