6,545 research outputs found
Welfare Reform and the Labor Market: Earnings Potential and Welfare Benefits in California, 1972–1994
Promotion of work is prominent in the rhetoric of current welfare reform efforts. The success of welfare-to-work policies is in part dependent on earnings available in employment. In this paper we use Current Population Survey data for the years 1972–1994 to develop measures of potential earnings from full-time work for low-skilled men and women in California and to compare the trend in earnings capacity for such people to welfare benefits. We find that while benefits have declined, earnings capacity has fallen faster, and the downward trend is particularly pronounced for men. Both the downward trends in benefits and potential earnings appear to have accelerated in recent years. State attempts to address the problem of low wages by expanding the opportunity for combining welfare with work may conflict with federal efforts to require that assistance be transitory.
Dynamical parameter estimation using realistic photodetection
We investigate the effect of imperfections in realistic detectors upon the
problem of quantum state and parameter estimation by continuous monitoring of
an open quantum system. Specifically, we have reexamined the system of a
two-level atom with an unknown Rabi frequency introduced by Gambetta and
Wiseman [Phys. Rev. A 64, 042105 (2001)]. We consider only direct
photodetection and use the realistic quantum trajectory theory reported by
Warszawski, Wiseman, and Mabuchi [Phys. Rev. A 65, 023802 (2002)]. The most
significant effect comes from a finite bandwidth, corresponding to an
uncertainty in the response time of the photodiode. Unless the bandwidth is
significantly greater than the Rabi frequency, the observer's ability to obtain
information about the unknown Rabi frequency, and about the state of the atom,
is severely compromised. This result has implications for quantum control in
the presence of unknown parameters for realistic detectors, and even for ideal
detectors, as it implies that most of the information in the measurement record
is contained in the precise timing of the detections.Comment: 8 pages, 6 figure
Association between high school students’ cigarette smoking, asthma and related beliefs: a population-based study
Background Smoking has a detrimental effect on the symptoms and severity of asthma, a common chronic disease among adolescents. The purpose of this study was to examine the association between asthma and smoking among high school students and assess provider-patient communication with asthmatic adolescents regarding smoking and adolescents’ beliefs about the harms of smoking. Methods In fall 2014, data from high school students, ages 14–18 years, completing the 2009-2010 Virginia Youth Tobacco Survey (N = 1796) were used in descriptive analyses and multivariable logistic regression models adjusting for model-specific confounders as appropriate. Results Overall, an estimated 19 % of high school students in Virginia smoked and 16 % had asthma. Odds of smoking did not differ by asthma status; however, asthmatics had 1.5 times higher odds of being asked if they smoke (95 % CI 1.06–2.13) and being advised not to smoke by a health professional (95 % CI 1.10–2.14) compared to non-asthmatics. Asthmatics who believed second-hand smoke or smoking 1–5 cigarettes/day was not harmful had respectively 4.2 and 2.8 times higher odds of smoking than those who thought each was harmful. Further, asthmatics who thought smoking 1−2 years is safe had 3.4 times higher odds of smoking than those who did not (95 % CI 1.57–10.1). Conclusions While asthmatic adolescents are just as likely to smoke as non-asthmatics, less healthy beliefs about the risks of smoking increase the odds of smoking among asthmatics. Thus, targeted asthma-specific smoking prevention and education to change attitudes and beliefs could be an effective tool for adolescents
Adaptive Phase Measurements in Linear Optical Quantum Computation
Photon counting induces an effective nonlinear optical phase shift on certain
states derived by linear optics from single photons. Although this no
nlinearity is nondeterministic, it is sufficient in principle to allow scalable
linear optics quantum computation (LOQC). The most obvious way to encode a
qubit optically is as a superposition of the vacuum and a single photon in one
mode -- so-called "single-rail" logic. Until now this approach was thought to
be prohibitively expensive (in resources) compared to "dual-rail" logic where a
qubit is stored by a photon across two modes. Here we attack this problem with
real-time feedback control, which can realize a quantum-limited phase
measurement on a single mode, as has been recently demonstrated experimentally.
We show that with this added measurement resource, the resource requirements
for single-rail LOQC are not substantially different from those of dual-rail
LOQC. In particular, with adaptive phase measurements an arbitrary qubit state
can be prepared deterministically
Quantum Trajectories for Realistic Detection
Quantum trajectories describe the stochastic evolution of an open quantum
system conditioned on continuous monitoring of its output, such as by an ideal
photodetector. Here we derive (non-Markovian) quantum trajectories for
realistic photodetection, including the effects of efficiency, dead time,
bandwidth, electronic noise, and dark counts. We apply our theory to a
realistic cavity QED scenario and investigate the impact of such detector
imperfections on the conditional evolution of the system state. A practical
theory of quantum trajectories with realistic detection will be essential for
experimental and technological applications of quantum feedback in many areas.Comment: 5 pages, 4 figures (3 .eps included, 1 jpeg as an additional file).
To be published in Phys. Rev.
Quantum optical waveform conversion
Currently proposed architectures for long-distance quantum communication rely
on networks of quantum processors connected by optical communications channels
[1,2]. The key resource for such networks is the entanglement of matter-based
quantum systems with quantum optical fields for information transmission. The
optical interaction bandwidth of these material systems is a tiny fraction of
that available for optical communication, and the temporal shape of the quantum
optical output pulse is often poorly suited for long-distance transmission.
Here we demonstrate that nonlinear mixing of a quantum light pulse with a
spectrally tailored classical field can compress the quantum pulse by more than
a factor of 100 and flexibly reshape its temporal waveform, while preserving
all quantum properties, including entanglement. Waveform conversion can be used
with heralded arrays of quantum light emitters to enable quantum communication
at the full data rate of optical telecommunications.Comment: submitte
State and dynamical parameter estimation for open quantum systems
Following the evolution of an open quantum system requires full knowledge of
its dynamics. In this paper we consider open quantum systems for which the
Hamiltonian is ``uncertain''. In particular, we treat in detail a simple system
similar to that considered by Mabuchi [Quant. Semiclass. Opt. 8, 1103 (1996)]:
a radiatively damped atom driven by an unknown Rabi frequency (as
would occur for an atom at an unknown point in a standing light wave). By
measuring the environment of the system, knowledge about the system state, and
about the uncertain dynamical parameter, can be acquired. We find that these
two sorts of knowledge acquisition (quantified by the posterior distribution
for , and the conditional purity of the system, respectively) are quite
distinct processes, which are not strongly correlated. Also, the quality and
quantity of knowledge gain depend strongly on the type of monitoring scheme. We
compare five different detection schemes (direct, adaptive, homodyne of the
quadrature, homodyne of the quadrature, and heterodyne) using four
different measures of the knowledge gain (Shannon information about ,
variance in , long-time system purity, and short-time system purity).Comment: 14 pages, 18 figure
Retroactive quantum jumps in a strongly-coupled atom-field system
We investigate a novel type of conditional dynamic that occurs in the
strongly-driven Jaynes-Cummings model with dissipation. Extending the work of
Alsing and Carmichael [Quantum Opt. {\bf 3}, 13 (1991)], we present a combined
numerical and analytic study of the Stochastic Master Equation that describes
the system's conditional evolution when the cavity output is continuously
observed via homodyne detection, but atomic spontaneous emission is not
monitored at all. We find that quantum jumps of the atomic state are induced by
its dynamical coupling to the optical field, in order retroactively to justify
atypical fluctuations in ocurring in the homodyne photocurrent.Comment: 4 pages, uses RevTex, 5 EPS figure
- …
