64 research outputs found

    Scaling Analysis of Affinity Propagation

    Get PDF
    We analyze and exploit some scaling properties of the Affinity Propagation (AP) clustering algorithm proposed by Frey and Dueck (2007). First we observe that a divide and conquer strategy, used on a large data set hierarchically reduces the complexity O(N2){\cal O}(N^2) to O(N(h+2)/(h+1)){\cal O}(N^{(h+2)/(h+1)}), for a data-set of size NN and a depth hh of the hierarchical strategy. For a data-set embedded in a dd-dimensional space, we show that this is obtained without notably damaging the precision except in dimension d=2d=2. In fact, for dd larger than 2 the relative loss in precision scales like N(2d)/(h+1)dN^{(2-d)/(h+1)d}. Finally, under some conditions we observe that there is a value ss^* of the penalty coefficient, a free parameter used to fix the number of clusters, which separates a fragmentation phase (for s<ss<s^*) from a coalescent one (for s>ss>s^*) of the underlying hidden cluster structure. At this precise point holds a self-similarity property which can be exploited by the hierarchical strategy to actually locate its position. From this observation, a strategy based on \AP can be defined to find out how many clusters are present in a given dataset.Comment: 28 pages, 14 figures, Inria research repor

    Conjugation of Functionalized SPIONs with Transferrin for Targeting and Imaging Brain Glial Tumors in Rat Model

    Get PDF
    Currently, effective and specific diagnostic imaging of brain glioma is a major challenge. Nanomedicine plays an essential role by delivering the contrast agent in a targeted manner to specific tumor cells, leading to improvement in accurate diagnosis by good visualization and specific demonstration of tumor cells. This study investigated the preparation and characterization of a targeted MR contrast agent, transferrin-conjugated superparamagnetic iron oxide nanoparticles (Tf-SPIONs), for brain glioma detection. MR imaging showed the obvious contrast change of brain glioma before and after administration of Tf-SPIONs in C6 glioma rat model in vivo on T2 weighted imaging. Significant contrast enhancement of brain glioma could still be clearly seen even 48 h post injection, due to the retention of Tf-SPIONs in cytoplasm of tumor cells which was proved by Prussian blue staining. Thus, these results suggest that Tf-SPIONs could be a potential targeting MR contrast agent for the brain glioma

    Increased CD45RA+FoxP3low Regulatory T Cells with Impaired Suppressive Function in Patients with Systemic Lupus Erythematosus

    Get PDF
    BACKGROUND: The role of naturally occurring regulatory T cells (Treg) in the control of the development of systemic lupus erythematosus (SLE) has not been well defined. Therefore, we dissect the phenotypically heterogeneous CD4(+)FoxP3(+) T cells into subpopulations during the dynamic SLE development. METHODLOGY/PRINCIPAL FINDINGS: To evaluate the proliferative and suppressive capacities of different CD4(+) T cell subgroups between active SLE patients and healthy donors, we employed CD45RA and CD25 as surface markers and carboxyfluorescein diacetatesuccinimidyl ester (CFSE) dilution assay. In addition, multiplex cytokines expression in active SLE patients was assessed using Luminex assay. Here, we showed a significant increase in the frequency of CD45RA(+)FoxP3(low) naive Treg cells (nTreg cells) and CD45RA(-)FoxP3(low) (non-Treg) cells in patients with active SLE. In active SLE patients, the increased proportions of CD45RA(+)FoxP3(low) nTreg cells were positively correlated with the disease based on SLE disease activity index (SLEDAI) and the status of serum anti-dsDNA antibodies. We found that the surface marker combination of CD25(+)CD45RA(+) can be used to defined CD45RA(+)FoxP3(low) nTreg cells for functional assays, wherein nTreg cells from active SLE patients demonstrated defective suppression function. A significant correlation was observed between inflammatory cytokines, such as IL-6, IL-12 and TNFα, and the frequency of nTreg cells. Furthermore, the CD45RA(+)FoxP3(low) nTreg cell subset increased when cultured with SLE serum compared to healthy donor serum, suggesting that the elevated inflammatory cytokines of SLE serum may promote nTreg cell proliferation/expansion. CONCLUSIONS/SIGNIFICANCE: Our results indicate that impaired numbers of functional CD45RA(+)FoxP3(low) naive Treg cell and CD45RA(-)FoxP3(low) non-suppressive T cell subsets in inflammatory conditions may contribute to SLE development. Therefore, analysis of subsets of FoxP3(+) T cells, using a combination of FoxP3, CD25 and CD45RA, rather than whole FoxP3(+) T cells, will help us to better understand the pathogenesis of SLE and may lead to the development of new therapeutic strategies

    Wearable sensors for monitoring marine environments and their inhabitants

    Get PDF
    Human societies depend on marine ecosystems, but their degradation continues. Toward mitigating this decline, new and more effective ways to precisely measure the status and condition of marine environments are needed alongside existing rebuilding strategies. Here, we provide an overview of how sensors and wearable technology developed for humans could be adapted to improve marine monitoring. We describe barriers that have slowed the transition of this technology from land to sea, update on the developments in sensors to advance ocean observation and advocate for more widespread use of wearables on marine organisms in the wild and in aquaculture. We propose that large-scale use of wearables could facilitate the concept of an 'internet of marine life' that might contribute to a more robust and effective observation system for the oceans and commercial aquaculture operations. These observations may aid in rationalizing strategies toward conservation and restoration of marine communities and habitats.This research was funded by the King Abdullah University of Science and Technology sensor initiative (OSR-2015 Sensors 2707).Peer reviewe

    Production of small ruminant morbillivirus, rift valley fever virus and lumpy skin disease virus in CelCradle™ -500A bioreactors

    No full text
    Abstract Background Animal vaccination is an important way to stop the spread of diseases causing immense damage to livestock and economic losses and the potential transmission to humans. Therefore effective method for vaccine production using simple and inexpensive bioprocessing solutions is very essential. Conventional culture systems currently in use, tend to be uneconomic in terms of labor and time involved. Besides, they offer a limited surface area for growth of cells. In this study, the CelCradle™-500A was evaluated as an alternative to replace conventional culture systems in use such as Cell factories for the production of viral vaccines against small ruminant morbillivirus (PPR), rift valley fever virus (RVF) and lumpy skin disease virus (LSD). Results Two types of cells Vero and primary Lamb Testis cells were used to produce these viruses. The study was done in 2 phases as a) optimization of cell growth and b) virus cultivation. Vero cells could be grown to significantly higher cell densities of 3.04 × 109 using the CelCradle™-500A with a shorter doubling time as compared to 9.45 × 108 cells in Cell factories. This represents a 19 fold increase in cell numbers as compared to seeding vs only 3.7 fold in Cell factories. LT cells achieved modestly higher cell densities of 6.7 × 108 as compared to 6.3 × 108 in Cell factories. The fold change in densities for these cells was 3 fold in the CelCradle™-500A vs 2.5 fold in Cell factories. The titers in the conventional system and the bioreactor were not significantly different. However, the Cell-specific virus yield for rift valley fever virus and lumpy skin disease virus are higher (25 virions/cell for rift valley fever virus, and 21.9 virions/cell for lumpy skin disease virus versus 19.9 virions/cell for rift valley fever virus and 10 virions/cell for lumpy skin disease virus). Conclusions This work represents a novel study for primary lamb testis cell culture in CellCradle™-500A bioreactors. In addition, on account of the high cell densities obtained and the linear scalability the titers could be further optimized using other culture process such us perfusion. </jats:sec
    corecore