557 research outputs found
Size bias and differential lensing of strongly lensed, dusty galaxies identified in wide-field surveys
We address two selection effects that operate on samples of gravitationally
lensed dusty galaxies identified in millimeter- and submillimeter-wavelength
surveys. First, we point out the existence of a "size bias" in such samples:
due to finite source effects, sources with higher observed fluxes are
increasingly biased towards more compact objects. Second, we examine the effect
of differential lensing in individual lens systems by modeling each source as a
compact core embedded in an extended diffuse halo. Considering the ratio of
magnifications in these two components, we find that at high overall
magnifications the compact component is amplified by a much larger factor than
the diffuse component, but at intermediate magnifications (~10) the probability
of a larger magnification for the extended region is higher. Lens models
determined from multi-frequency resolved imaging data are crucial to correct
for this effect.Comment: 7 pages, 6 figure
Effects of Strong Gravitational Lensing on Millimeter-Wave Galaxy Number Counts
We study the effects of strong lensing on the observed number counts of mm
sources using a ray tracing simulation and two number count models of unlensed
sources. We employ a quantitative treatment of maximum attainable magnification
factor depending on the physical size of the sources, also accounting for
effects of lens halo ellipticity. We calculate predicted number counts and
redshift distributions of mm galaxies including the effects of strong lensing
and compare with the recent source count measurements of the South Pole
Telescope (SPT). The predictions have large uncertainties, especially the
details of the mass distribution in lens galaxies and the finite extent of
sources, but the SPT observations are in good agreement with predictions. The
sources detected by SPT are predicted to largely consist of strongly lensed
galaxies at z>2. The typical magnifications of these sources strongly depends
on both the assumed unlensed source counts and the flux of the observed
sources
Detection of lensing substructure using ALMA observations of the dusty galaxy SDP.81
We study the abundance of substructure in the matter density near galaxies
using ALMA Science Verification observations of the strong lensing system
SDP.81. We present a method to measure the abundance of subhalos around
galaxies using interferometric observations of gravitational lenses. Using
simulated ALMA observations, we explore the effects of various systematics,
including antenna phase errors and source priors, and show how such errors may
be measured or marginalized. We apply our formalism to ALMA observations of
SDP.81. We find evidence for the presence of a
subhalo near one of the images, with a significance of in a joint
fit to data from bands 6 and 7; the effect of the subhalo is also detected in
both bands individually. We also derive constraints on the abundance of dark
matter subhalos down to , pushing down to the
mass regime of the smallest detected satellites in the Local Group, where there
are significant discrepancies between the observed population of luminous
galaxies and predicted dark matter subhalos. We find hints of additional
substructure, warranting further study using the full SDP.81 dataset
(including, for example, the spectroscopic imaging of the lensed carbon
monoxide emission). We compare the results of this search to the predictions of
CDM halos, and find that given current uncertainties in the host halo
properties of SDP.81, our measurements of substructure are consistent with
theoretical expectations. Observations of larger samples of gravitational
lenses with ALMA should be able to improve the constraints on the abundance of
galactic substructure.Comment: 18 pages, 13 figures, Comments are welcom
Statistical coverage for supersymmetric parameter estimation: a case study with direct detection of dark matter
Models of weak-scale supersymmetry offer viable dark matter (DM) candidates.
Their parameter spaces are however rather large and complex, such that pinning
down the actual parameter values from experimental data can depend strongly on
the employed statistical framework and scanning algorithm. In frequentist
parameter estimation, a central requirement for properly constructed confidence
intervals is that they cover true parameter values, preferably at exactly the
stated confidence level when experiments are repeated infinitely many times.
Since most widely-used scanning techniques are optimised for Bayesian
statistics, one needs to assess their abilities in providing correct confidence
intervals in terms of the statistical coverage. Here we investigate this for
the Constrained Minimal Supersymmetric Standard Model (CMSSM) when only
constrained by data from direct searches for dark matter. We construct
confidence intervals from one-dimensional profile likelihoods and study the
coverage by generating several pseudo-experiments for a few benchmark sets of
pseudo-true parameters. We use nested sampling to scan the parameter space and
evaluate the coverage for the benchmarks when either flat or logarithmic priors
are imposed on gaugino and scalar mass parameters. The sampling algorithm has
been used in the configuration usually adopted for exploration of the Bayesian
posterior. We observe both under- and over-coverage, which in some cases vary
quite dramatically when benchmarks or priors are modified. We show how most of
the variation can be explained as the impact of explicit priors as well as
sampling effects, where the latter are indirectly imposed by physicality
conditions. For comparison, we also evaluate the coverage for Bayesian credible
intervals, and observe significant under-coverage in those cases.Comment: 30 pages, 5 figures; v2 includes major updates in response to
referee's comments; extra scans and tables added, discussion expanded, typos
corrected; matches published versio
Direct Constraints on Minimal Supersymmetry from Fermi-LAT Observations of the Dwarf Galaxy Segue 1
The dwarf galaxy Segue 1 is one of the most promising targets for the
indirect detection of dark matter. Here we examine what constraints 9 months of
Fermi-LAT gamma-ray observations of Segue 1 place upon the Constrained Minimal
Supersymmetric Standard Model (CMSSM), with the lightest neutralino as the dark
matter particle. We use nested sampling to explore the CMSSM parameter space,
simultaneously fitting other relevant constraints from accelerator bounds, the
relic density, electroweak precision observables, the anomalous magnetic moment
of the muon and B-physics. We include spectral and spatial fits to the Fermi
observations, a full treatment of the instrumental response and its related
uncertainty, and detailed background models. We also perform an extrapolation
to 5 years of observations, assuming no signal is observed from Segue 1 in that
time. Results marginally disfavour models with low neutralino masses and high
annihilation cross-sections. Virtually all of these models are however already
disfavoured by existing experimental or relic density constraints.Comment: 22 pages, 5 figures; added extra scans with extreme halo parameters,
expanded introduction and discussion in response to referee's comment
SUSY Breaking and Moduli Stabilization from Fluxes in Gauged 6D Supergravity
We construct the 4D N=1 supergravity which describes the low-energy limit of
6D supergravity compactified on a sphere with a monopole background a la Salam
and Sezgin. This provides a simple setting sharing the main properties of
realistic string compactifications such as flat 4D spacetime, chiral fermions
and N=1 supersymmetry as well as Fayet-Iliopoulos terms induced by the
Green-Schwarz mechanism. The matter content of the resulting theory is a
supersymmetric SO(3)xU(1) gauge model with two chiral multiplets, S and T. The
expectation value of T is fixed by the classical potential, and S describes a
flat direction to all orders in perturbation theory. We consider possible
perturbative corrections to the Kahler potential in inverse powers of
and , and find that under certain circumstances, and when taken together
with low-energy gaugino condensation, these can lift the degeneracy of the flat
direction for . The resulting vacuum breaks supersymmetry at moderately
low energies in comparison with the compactification scale, with positive
cosmological constant. It is argued that the 6D model might itself be obtained
from string compactifications, giving rise to realistic string
compactifications on non Ricci flat manifolds. Possible phenomenological and
cosmological applications are briefly discussed.Comment: 32 pages, 2 figures. Uses JHEP3.cls. References fixed and updated,
some minor typos fixed. Corrected minor error concerning Kaluza-Klein scales.
Results remain unchange
A Profile Likelihood Analysis of the Constrained MSSM with Genetic Algorithms
The Constrained Minimal Supersymmetric Standard Model (CMSSM) is one of the
simplest and most widely-studied supersymmetric extensions to the standard
model of particle physics. Nevertheless, current data do not sufficiently
constrain the model parameters in a way completely independent of priors,
statistical measures and scanning techniques. We present a new technique for
scanning supersymmetric parameter spaces, optimised for frequentist profile
likelihood analyses and based on Genetic Algorithms. We apply this technique to
the CMSSM, taking into account existing collider and cosmological data in our
global fit. We compare our method to the MultiNest algorithm, an efficient
Bayesian technique, paying particular attention to the best-fit points and
implications for particle masses at the LHC and dark matter searches. Our
global best-fit point lies in the focus point region. We find many
high-likelihood points in both the stau co-annihilation and focus point
regions, including a previously neglected section of the co-annihilation region
at large m_0. We show that there are many high-likelihood points in the CMSSM
parameter space commonly missed by existing scanning techniques, especially at
high masses. This has a significant influence on the derived confidence regions
for parameters and observables, and can dramatically change the entire
statistical inference of such scans.Comment: 47 pages, 8 figures; Fig. 8, Table 7 and more discussions added to
Sec. 3.4.2 in response to referee's comments; accepted for publication in
JHE
Maximum power extraction from wind turbines using a fault-tolerant fractional-order nonsingular terminal sliding mode controller
This work presents a nonlinear control approach to maximise the power extraction of wind energy conversion systems (WECSs) operating below their rated wind speeds. Due to nonlinearities associated with the dynamics of WECSs, the stochastic nature of wind, and the inevitable presence of faults in practice, developing reliable fault-tolerant control strategies to guarantee maximum power production of WECSs has always been considered important. A fault-tolerant fractional-order nonsingular terminal sliding mode control (FNTSMC) strategy to maximize the captured power of wind turbines (WT) subjected to actuator faults is developed. A nonsingular terminal sliding surface is proposed to ensure fast finite-time convergence, whereas the incorporation of fractional calculus in the controller enhances the convergence speed of system states and simultaneously suppresses chattering, resulting in extracted power maximisation by precisely tracking the optimum rotor speed. Closed-loop stability is analysed and validated through the Lyapunov stability criterion. Comparative numerical simulation analysis is carried out on a two-mass WT, and superior power production performance of the proposed method over other methods is demonstrated, both in fault-free and faulty situations
Asymmetric magnetization reversal in exchange-biased hysteresis loops
This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.Polarized neutron reflectometry is used to probe the in-plane projection of the net-magnetization vector M of polycrystalline Fe films exchange coupled to twinned (110) MnF2 or FeF2 antiferromagnetic (AF) layers. The magnetization reversal mechanism depends upon the orientation of the cooling field with respect to the twinned microstructure of the AF, and whether the applied field is increased to (or decreased from) a positive saturating field; i.e., the magnetization reversal is asymmetric. The reversal of the sample magnetization from one saturated state to the other occurs via either domain wall motion or magnetization rotation on opposite sides of the same hysteresis loop
- …
