27,787 research outputs found

    Regularized Tyler's Scatter Estimator: Existence, Uniqueness, and Algorithms

    Full text link
    This paper considers the regularized Tyler's scatter estimator for elliptical distributions, which has received considerable attention recently. Various types of shrinkage Tyler's estimators have been proposed in the literature and proved work effectively in the "small n large p" scenario. Nevertheless, the existence and uniqueness properties of the estimators are not thoroughly studied, and in certain cases the algorithms may fail to converge. In this work, we provide a general result that analyzes the sufficient condition for the existence of a family of shrinkage Tyler's estimators, which quantitatively shows that regularization indeed reduces the number of required samples for estimation and the convergence of the algorithms for the estimators. For two specific shrinkage Tyler's estimators, we also proved that the condition is necessary and the estimator is unique. Finally, we show that the two estimators are actually equivalent. Numerical algorithms are also derived based on the majorization-minimization framework, under which the convergence is analyzed systematically

    Astrophysical constraints on the proton-to-electron mass ratio with FAST

    Full text link
    That the laws of physics are the same at all times and places throughout the Universe is one of the basic assumptions of physics. Astronomical observations provide the only means to test this basic assumption on cosmological time and distance scales. The possibility of variations in the dimensionless physical constant {\mu} - the proton-to-electron mass ratio, can be tested by comparing astronomical measurements of the rest frequency of certain spectral lines at radio wavelengths with laboratory determinations. Different types of molecular transitions have different dependencies on {\mu} and so observations of two or more spectral lines towards the same astronomical source can be used to test whether there is any evidence for either temporal or spatial changes in the physical fundamental constants. {\mu} will change if the relative strength of the strong nuclear force compared to the electromagnetic force varies. Theoretical studies have shown that the rotational transitions of some molecules which have transitions in the frequency range that will be covered by FAST (e.g., CH3OH, OH and CH) are sensitive to changes in {\mu}. A number of studies looking for possible variations in {\mu} have been undertaken with existing telescopes, however, the greater sensitivity of FAST means it will open new opportunities to significantly improve upon measurements made to date. In this paper, we discuss which molecular transitions and sources (both in the Galaxy and external galaxies) are likely targets for providing improved constraints on {\mu} with FAST

    Effects of fiber/matrix interactions on the properties of graphite/epoxy composites

    Get PDF
    A state-of-the-art literature review of the interactions between fibers and resin within graphite epoxy composite materials was performed. Emphasis centered on: adhesion theory; wetting characteristics of carbon fiber; load transfer mechanisms; methods to evaluate and measure interfacial bond strengths; environmental influence at the interface; and the effect of the interface/interphase on composite performance, with particular attention to impact toughness. In conjunction with the literature review, efforts were made to design experiments to study the wetting behavior of carbon fibers with various finish variants and their effect on adhesion joint strength. The properties of composites with various fiber finishes were measured and compared to the base-line properties of a control. It was shown that by tailoring the interphase properties, a 30% increase in impact toughness was achieved without loss of mechanical properties at both room and elevated temperatures
    corecore