28,736 research outputs found
Silicon Solar Cell Process Development, Fabrication and Analysis, Phase 1
Solar cells from RTR ribbons, EFG (RF and RH) ribbons, dendritic webs, Silso wafers, cast silicon by HEM, silicon on ceramic, and continuous Czochralski ingots were fabricated using a standard process typical of those used currently in the silicon solar cell industry. Back surface field (BSF) processing and other process modifications were included to give preliminary indications of possible improved performance. The parameters measured included open circuit voltage, short circuit current, curve fill factor, and conversion efficiency (all taken under AM0 illumination). Also measured for typical cells were spectral response, dark I-V characteristics, minority carrier diffusion length, and photoresponse by fine light spot scanning. the results were compared to the properties of cells made from conventional single crystalline Czochralski silicon with an emphasis on statistical evaluation. Limited efforts were made to identify growth defects which will influence solar cell performance
Silicon solar cell process development, fabrication, and analysis
Two large cast ingots were evaluated. Solar cell performance versus substrate position within the ingots was obtained and the results are presented. Dendritic web samples were analyzed in terms of structural defects, and efforts were made to correlate the data with the performance of solar cells made from the webs
Depressed clad hollow optical fiber with fundamental LP01 mode cut-off
We propose a depressed clad hollow optical fiber with fundamental (LP01) mode cut-off suitable for high power short-wavelength, especially three-level, fiber laser operation by introducing highly wavelength dependent losses at longer wavelengths. The cut-off characteristic of such fiber structure was investigated. A Yb-doped depressed clad hollow optical fiber laser generating 59.1W of output power at 1046nm with 86% of slope efficiency with respect to the absorbed pump power was realised by placing the LP01 mode cut-off at ~1100nm
Nonlocal effects in the shot noise of diffusive superconductor - normal-metal systems
A cross-shaped diffusive system with two superconducting and two normal
electrodes is considered. A voltage is applied between the normal
leads. Even in the absence of average current through the superconducting
electrodes their presence increases the shot noise at the normal electrodes and
doubles it in the case of a strong coupling to the superconductors. The
nonequilibrium noise at the superconducting electrodes remains finite even in
the case of a vanishingly small transport current due to the absence of energy
transfer into the superconductors. This noise is suppressed by
electron-electron scattering at sufficiently high voltages.Comment: 4 pages, RevTeX, 2 eps figure
Silicon solar cell process development, fabrication and analysis
Solar cells were fabricated from EFG ribbons dendritic webs, cast ingots by heat exchanger method, and cast ingots by ubiquitous crystallization process. Baseline and other process variations were applied to fabricate solar cells. EFG ribbons grown in a carbon-containing gas atmosphere showed significant improvement in silicon quality. Baseline solar cells from dendritic webs of various runs indicated that the quality of the webs under investigation was not as good as the conventional CZ silicon, showing an average minority carrier diffusion length of about 60 um versus 120 um of CZ wafers. Detail evaluation of large cast ingots by HEM showed ingot reproducibility problems from run to run and uniformity problems of sheet quality within an ingot. Initial evaluation of the wafers prepared from the cast polycrystalline ingots by UCP suggested that the quality of the wafers from this process is considerably lower than the conventional CZ wafers. Overall performance was relatively uniform, except for a few cells which showed shunting problems caused by inclusions
The Complexity of Codiagnosability for Discrete Event and Timed Systems
In this paper we study the fault codiagnosis problem for discrete event
systems given by finite automata (FA) and timed systems given by timed automata
(TA). We provide a uniform characterization of codiagnosability for FA and TA
which extends the necessary and sufficient condition that characterizes
diagnosability. We also settle the complexity of the codiagnosability problems
both for FA and TA and show that codiagnosability is PSPACE-complete in both
cases. For FA this improves on the previously known bound (EXPTIME) and for TA
it is a new result. Finally we address the codiagnosis problem for TA under
bounded resources and show it is 2EXPTIME-complete.Comment: 24 pages
A Multi-level Algorithm for Quantum-impurity Models
A continuous-time path integral Quantum Monte Carlo method using the
directed-loop algorithm is developed to simulate the Anderson single-impurity
model in the occupation number basis. Although the method suffers from a sign
problem at low temperatures, the new algorithm has many advantages over
conventional algorithms. For example, the model can be easily simulated in the
Kondo limit without time discretization errors. Further, many observables
including the impurity susceptibility and a variety of fermionic observables
can be calculated efficiently. Finally the new approach allows us to explore a
general technique, called the multi-level algorithm, to solve the sign problem.
We find that the multi-level algorithm is able to generate an exponentially
large number of configurations with an effort that grows as a polynomial in
inverse temperature such that configurations with a positive sign dominate over
those with negative signs. Our algorithm can be easily generalized to other
multi-impurity problems.Comment: 9 pages, 8 figure
- …
