103 research outputs found
Studies of cracking behavior in melt-processed YBCO bulk superconductors
An important phenomenon in bulk superconductors fabricated by top-seeded-melt growth (TSMG) is the formation of cracks due to the inherent brittleness of the YBa2Cu3O7-δ (Y-123) phase matrix. These form during the fabrication of the superconducting monolith and play an important role in the limitation of current flow. However, cracks may also form during cooling cycles of the sample to liquid nitrogen temperatures. In this investigation, macrocracks along the c-direction, in particular were analyzed microscopically before and after cooling. In addition we attempt to resolve the c-axis macrocrack formation pattern using the magnetoscan technique
Current percolation and anisotropy in polycrystalline MgB
The influence of anisotropy on the transport current in MgB
polycrystalline bulk samples and wires is discussed. A model for the critical
current density is proposed, which is based on anisotropic London theory, grain
boundary pinning and percolation theory. The calculated currents agree
convincingly with experimental data and the fit parameters, especially the
anisotropy, obtained from percolation theory agree with experiment or
theoretical predictions.Comment: 5 pages, accepted for publication in Physical Review Letters
(http://prl.aps.org/
Anisotropy of the Upper Critical Field and Critical Current in Single Crystal MgB
We report on specific heat, high magnetic field transport and
susceptibility measurements on magnesium diboride single crystals. The
upper critical field for magnetic fields perpendicular and parallel to
the Mg and B planes is presented for the first time in the entire temperature
range. A very different temperature dependence has been observed in the two
directions which yields to a temperature dependent anisotropy with 5 at low temperatures and about 2 near . A peak effect is observed
in susceptibility measurements for 2 T parallel to the axis and
the critical current density presnts a sharp maximum for parallel to the
ab-plane.Comment: 6 pages, 5 figure
Anisotropy of the superconducting state properties and phase diagram of MgB2 by torque magnetometry on single crystals
The angular and temperature dependence of the upper critical field Hc2 in
MgB2 was determined from torque magnetometry measurements on single crystals.
The Hc2 anisotropy gamma_H was found to decrease with increasing temperature,
in disagreement with the anisotropic Ginzburg-Landau theory, which predicts
that the gamma_H is temperature independent. This behaviour can be explained by
the two band nature of superconductivity in MgB2. An analysis of measurements
of the reversible torque in the mixed state yields a field dependent effective
anisotropy gamma_eff, which can be at least partially explained by different
anisotropies of the penetration depth and the upper critical field. It is shown
that a peak effect in fields of about 0.85 Hc2 is a manifestation of an
order-disorder phase transition of vortex matter. The H-T phase diagram of MgB2
for H//c correlates with the intermediate strength of thermal fluctuations in
MgB2, as compared to those in high and low Tc superconductors.Comment: 12 pages, 8 figures, Physica C in print (invited paper for a special
issue on MgB2
Mixed state properties of superconducting MgB2 single crystals
We report on measurements of the magnetic moment in superconducting MgB2
single crystals. We find \mu_0H_{c2}^c(0) = 3.2 T, \mu_0H_{c2}^{ab}(0) = 14.5
T, \gamma = 4.6, \mu_0H_c(0) = 0.28 T, and \kappa(T_c) = 4.7. The standard
Ginzburg-Landau and London model relations lead to a consistent data set and
indicate that MgB2 is a clean limit superconductor of intermediate coupling
strength with very pronounced anisotropy effects
Very high upper critical fields in MgB2 produced by selective tuning of impurity scattering
We report a significant enhancement of the upper critical field of
different samples alloyed with nonmagnetic impurities. By studying
films and bulk polycrystals with different resistivities , we show a
clear trend of increase as increases. One particular high
resistivity film had zero-temperature well above the
values of competing non-cuprate superconductors such as and Nb-Ti. Our
high-field transport measurements give record values and for high resistivity films and
for untextured bulk polycrystals. The highest
film also exhibits a significant upward curvature of , and
temperature dependence of the anisotropy parameter opposite to that of single crystals: decreases as the
temperature decreases, from to .
This remarkable enhancement and its anomalous temperature dependence
are a consequence of the two-gap superconductivity in , which offers
special opportunities for further increase by tuning of the impurity
scattering by selective alloying on Mg and B sites. Our experimental results
can be explained by a theory of two-gap superconductivity in the dirty limit.
The very high values of observed suggest that can be made
into a versatile, competitive high-field superconductor.Comment: An updated version of the paper (12/12/2002)that was placed on
cond-mat on May 7 200
Ginzburg-Landau theory of vortices in a multi-gap superconductor
The Ginzburg-Landau functional for a two-gap superconductor is derived within
the weak-coupling BCS model. The two-gap Ginzburg-Landau theory is, then,
applied to investigate various magnetic properties of MgB2 including an upturn
temperature dependence of the transverse upper critical field and a core
structure of an isolated vortex. Orientation of vortex lattice relative to
crystallographic axes is studied for magnetic fields parallel to the c-axis. A
peculiar 30-degree rotation of the vortex lattice with increasing strength of
an applied field observed by neutron scattering is attributed to the multi-gap
nature of superconductivity in MgB2.Comment: 11 page
Unusual effects of anisotropy on the specific heat of ceramic and single crystal MgB2
The two-gap structure in the superconducting state of MgB_2 gives rise to
unusual thermodynamic properties which depart markedly from the isotropic
single-band BCS model, both in their temperature- and field dependence. We
report and discuss measurements of the specific heat up to 16 T on ceramic, and
up to 14 T on single crystal samples, which demonstrate these effects in the
bulk. The behavior in zero field is described in terms of two characteristic
temperatures, a crossover temperature Tc_pi ~ 13 K, and a critical temperature
Tc = Tc_sigma ~ 38 K, whereas the mixed-state specific heat requires three
characteristic fields, an isotropic crossover field Hc2_pi ~ 0.35 T, and an
anisotropic upper critical field with extreme values Hc2_sigma_c ~ 3.5 T and
Hc2_sigma_ab ~ 19 T, where the indexes \pi and \sigma refer to the 3D and 2D
sheets of the Fermi surface. Irradiation-induced interband scattering tends to
move the gaps toward a common value, and increases the upper critical field up
to ~ 28 T when Tc = 30 K.Comment: 31 pages, 9 figures. Accepted in the Physica C special issue on MgB
Reversible magnetization of MgB2 single crystals with a two-gap nature
We present reversible magnetization measurements on MgB2 single crystals in
magnetic fields up to 2.5 T applied parallel to the crystal's c-axis. This
magnetization is analyzed in terms of the Hao-Clem model, and various
superconducting parameters, such as the critical fields [Hc(0) and Hc2(0)], the
characteristic lengths [xi(0) and lambda(0)], and the Ginzburg-Landau
parameter, kappa, are derived. The temperature dependence of the magnetic
penetration depth, lambda(T), obtained from the Hao-Clem analysis could not be
explained by theories assuming a single gap. Our data are well described by
using a two-gap model.Comment: 20 pages, 1 table, 4 figures, will be published in Phys. Rev.
Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors
Quasiclassic Uzadel equations for two-band superconductors in the dirty limit
with the account of both intraband and interband scattering by nonmagnetic
impurities are derived for any anisotropic Fermi surface. From these equations
the Ginzburg-Landau equations, and the critical temperature are obtained.
An equation for the upper critical field, which determines both the temperature
dependence of and the orientational dependence of
as a function of the angle between and the c-axis is
obtained. It is shown that the shape of the curve essentially
depends on the ratio of the intraband electron diffusivities and ,
and can be very different from the standard one-gap dirty limit theory. In
particular, the value can considerably exceed ,
which can have important consequences for applications of . A scaling
relation is proposed which enables one to obtain the angular dependence of
from the equation for at . It is shown
that, depending on the relation between and , the ratio of the upper
critical field for and can both increase and decrease as the temperature decreases. Implications
of the obtained results for are discussed
- …
