3,033 research outputs found
Tool Life of PM-HSS Cutting Tools when Milling of Titanium Alloy
Machining of titanium alloys meets with poor life of a cutting tool. It is caused by a low thermal conductivity and by a high strength-to-weight ratio of the alloys. Various approaches for cost-effective and productive machining titanium alloys are still researched. One of methods can be using the cutters made of modern high-speed steel (HSS) as a product of a powder metallurgy (PM) process. These materials (PM-HSS) possess better and homogenous mechanical properties than conventional high-speed steel. The PM-HSS cutters equipped with any effective coating allow increase cutting speed
to the level which is typical for uncoated cemented carbide, while price of the tool is lower. In the article several PM-HSS cutting tool materials were compared to conventional cobalt based HSS from the tool life point of view. It was proved that conventional high-speed steel offers very long tool life and high tool performance at speed of 30 m/min. However the regular tooth pitch significantly decreases tool life for this cutting tool material. The main benefit of PM-HSS cutters can be fully utilized when cutting speed about 50 m/min is applied. The cutters coated by effective thermal barrier showed longer tool life and higher performance of the cutting tools
Analysis of cutting parameters in point machining of parts with complex shape
This paper presents developed SW module in the postprocessor, which is designed to backward analysis of CAM milling toolpath.
The module is designed to analyze multi-axis finishing machining of complex shape parts with milling cutters with a circular cutting
edge. In CAM, the milling cutter diameter is entered by a constant value of the maximum cutting diameter, but moving of the contact
point between the milling cutter and the work piece, the actual cutting diameter changes over the machining cycle. By conventionally
entering of the constant diameter into CAM, required technological cutting parameters are not adhered in some cases, and thus the
resulting quality and productivity are not achieved. This developed SW tool is implemented directly into the postprocessor for generating NC programs. This Analysis Module designed as a tool for technologists and for CNC programators to visualize and to optimize
the machining process with respect to adhere cutting parameters
A micromechanics-enhanced finite element formulation for modelling heterogeneous materials
In the analysis of composite materials with heterogeneous microstructures,
full resolution of the heterogeneities using classical numerical approaches can
be computationally prohibitive. This paper presents a micromechanics-enhanced
finite element formulation that accurately captures the mechanical behaviour of
heterogeneous materials in a computationally efficient manner. The strategy
exploits analytical solutions derived by Eshelby for ellipsoidal inclusions in
order to determine the mechanical perturbation fields as a result of the
underlying heterogeneities. Approximation functions for these perturbation
fields are then incorporated into a finite element formulation to augment those
of the macroscopic fields. A significant feature of this approach is that the
finite element mesh does not explicitly resolve the heterogeneities and that no
additional degrees of freedom are introduced. In this paper, hybrid-Trefftz
stress finite elements are utilised and performance of the proposed formulation
is demonstrated with numerical examples. The method is restricted here to
elastic particulate composites with ellipsoidal inclusions but it has been
designed to be extensible to a wider class of materials comprising arbitrary
shaped inclusions.Comment: 28 pages, 12 figures, 2 table
Mitochondrial encephalocardio-myopathy with early neonatal onset due to TMEM70 mutation
Objective Mitochondrial disturbances of energy-generating systems in childhood are a heterogeneous group of disorders. The aim of this multi-site survey was to characterise the natural course of a novel mitochondrial disease with ATP synthase deficiency and mutation in the TMEM70 gene.
Methods Retrospective clinical data and metabolic profiles were collected and evaluated in 25 patients (14 boys, 11 girls) from seven European countries with a c. 317-2A -> G mutation in the TMEM70 gene.
Results Severe muscular hypotonia (in 92% of newborns), apnoic spells (92%), hypertrophic cardiomyopathy (HCMP; 76%) and profound lactic acidosis (lactate 5-36 mmol/l; 92%) with hyperammonaemia (100-520 mu mol/l; 86%) were present from birth. Ten patients died within the first 6 weeks of life. Most patients surviving the neonatal period had persisting muscular hypotonia and developed psychomotor delay. HCMP was non-progressive and even disappeared in some children. Hypospadia was present in 54% of the boys and cryptorchidism in 67%. Increased excretion of lactate and 3-methylglutaconic acid (3-MGC) was observed in all patients. In four surviving patients, life-threatening hyperammonaemia occurred during childhood, triggered by acute gastroenteritis and prolonged fasting.
Conclusions ATP synthase deficiency with mutation in TMEM70 should be considered in the diagnosis and management of critically ill neonates with early neonatal onset of muscular hypotonia, HCMP and hypospadias in boys accompanied by lactic acidosis, hyperammonaemia and 3-MGC-uria. However, phenotype severity may vary significantly. The disease occurs frequently in the Roma population and molecular-genetic analysis of the TMEM70 gene is sufficient for diagnosis without need of muscle biopsy in affected children
Microstructural enrichment functions based on stochastic Wang tilings
This paper presents an approach to constructing microstructural enrichment
functions to local fields in non-periodic heterogeneous materials with
applications in Partition of Unity and Hybrid Finite Element schemes. It is
based on a concept of aperiodic tilings by the Wang tiles, designed to produce
microstructures morphologically similar to original media and enrichment
functions that satisfy the underlying governing equations. An appealing feature
of this approach is that the enrichment functions are defined only on a small
set of square tiles and extended to larger domains by an inexpensive stochastic
tiling algorithm in a non-periodic manner. Feasibility of the proposed
methodology is demonstrated on constructions of stress enrichment functions for
two-dimensional mono-disperse particulate media.Comment: 27 pages, 12 figures; v2: completely re-written after the first
revie
Hilbert Lattice Equations
There are five known classes of lattice equations that hold in every infinite
dimensional Hilbert space underlying quantum systems: generalised
orthoarguesian, Mayet's E_A, Godowski, Mayet-Godowski, and Mayet's E equations.
We obtain a result which opens a possibility that the first two classes
coincide. We devise new algorithms to generate Mayet-Godowski equations that
allow us to prove that the fourth class properly includes the third. An open
problem related to the last class is answered. Finally, we show some new
results on the Godowski lattices characterising the third class of equations.Comment: 24 pages, 3 figure
Entanglement and Timing-Based Mechanisms in the Coherent Control of Scattering Processes
The coherent control of scattering processes is considered, with electron
impact dissociation of H used as an example. The physical mechanism
underlying coherently controlled stationary state scattering is exposed by
analyzing a control scenario that relies on previously established entanglement
requirements between the scattering partners. Specifically, initial state
entanglement assures that all collisions in the scattering volume yield the
desirable scattering configuration. Scattering is controlled by preparing the
particular internal state wave function that leads to the favored collisional
configuration in the collision volume. This insight allows coherent control to
be extended to the case of time-dependent scattering. Specifically, we identify
reactive scattering scenarios using incident wave packets of translational
motion where coherent control is operational and initial state entanglement is
unnecessary. Both the stationary and time-dependent scenarios incorporate
extended coherence features, making them physically distinct. From a
theoretical point of view, this work represents a large step forward in the
qualitative understanding of coherently controlled reactive scattering. From an
experimental viewpoint, it offers an alternative to entanglement-based control
schemes. However, both methods present significant challenges to existing
experimental technologies
Revival of the spin-Peierls transition in Cu_xZn_(1-x)GeO_3 under pressure
Pressure and temperature dependent susceptibility and Raman scattering
experiments on single crystalline Cu_xZn_(1-x)GeO_3 have shown an unusually
strong increase of the spin-Peierls phase transition temperature upon applying
hydrostatic pressure. The large positive pressure coefficient (7.5 K/GPa) -
almost twice as large as for the pure compound (4.5 K/GPa) - is interpreted as
arising due to an increasing magnetic frustration which decreases the spin-spin
correlation length, and thereby weakens the influence of the non-magnetic
Zn-substitution.Comment: LaTeX, 15 pages, 5 eps figures, Phys. Rev. B, to appea
- …
