468 research outputs found

    Evolutionary relationships in Panicoid grasses based on plastome phylogenomics (Panicoideae; Poaceae)

    Get PDF
    Background: Panicoideae are the second largest subfamily in Poaceae (grass family), with 212 genera and approximately 3316 species. Previous studies have begun to reveal relationships within the subfamily, but largely lack resolution and/or robust support for certain tribal and subtribal groups. This study aims to resolve these relationships, as well as characterize a putative mitochondrial insert in one linage. Results: 35 newly sequenced Panicoideae plastomes were combined in a phylogenomic study with 37 other species: 15 Panicoideae and 22 from outgroups. A robust Panicoideae topology largely congruent with previous studies was obtained, but with some incongruences with previously reported subtribal relationships. A mitochondrial DNA (mtDNA) to plastid DNA (ptDNA) transfer was discovered in the Paspalum lineage. Conclusions: The phylogenomic analysis returned a topology that largely supports previous studies. Five previously recognized subtribes appear on the topology to be non-monophyletic. Additionally, evidence for mtDNA to ptDNA transfer was identified in both Paspalum fimbriatum and P. dilatatum, and suggests a single rare event that took place in a common progenitor. Finally, the framework from this study can guide larger whole plastome sampling to discern the relationships in Cyperochloeae, Steyermarkochloeae, Gynerieae, and other incertae sedis taxa that are weakly supported or unresolved.Fil: Burke, Sean V.. Northern Illinois University; Estados UnidosFil: Wysocki, William P.. Northern Illinois University; Estados UnidosFil: Zuloaga, Fernando Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Craine, Joseph M.. Jonah Ventures; Estados UnidosFil: Pires, J. Chris. University of Missouri; Estados UnidosFil: Edger, Patrick P.. Michigan State University; Estados UnidosFil: Mayfield Jones, Dustin. Donald Danforth Plant Science Center; Estados UnidosFil: Clark, Lynn G.. Iowa State University; Estados UnidosFil: Kelchner, Scot A.. University of Idaho; Estados UnidosFil: Duvall, Melvin R.. Northern Illinois University; Estados Unido

    Quantum Statistics of Surface Plasmon Polaritons in Metallic Stripe Waveguides

    Full text link
    Single surface plasmon polaritons are excited using photons generated via spontaneous parametric down-conversion. The mean excitation rates, intensity correlations and Fock state populations are studied. The observed dependence of the second order coherence in our experiment is consistent with a linear uncorrelated Markovian environment in the quantum regime. Our results provide important information about the effect of loss for assessing the potential of plasmonic waveguides for future nanophotonic circuitry in the quantum regime.Comment: 21 pages, 6 figures, published in Nano Letters, publication date (web): March 27 (2012

    A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models.

    Get PDF
    Breast cancer research is hampered by difficulties in obtaining and studying primary human breast tissue, and by the lack of in vivo preclinical models that reflect patient tumor biology accurately. To overcome these limitations, we propagated a cohort of human breast tumors grown in the epithelium-free mammary fat pad of severe combined immunodeficient (SCID)/Beige and nonobese diabetic (NOD)/SCID/IL-2γ-receptor null (NSG) mice under a series of transplant conditions. Both models yielded stably transplantable xenografts at comparably high rates (∼21% and ∼19%, respectively). Of the conditions tested, xenograft take rate was highest in the presence of a low-dose estradiol pellet. Overall, 32 stably transplantable xenograft lines were established, representing 25 unique patients. Most tumors yielding xenografts were "triple-negative" [estrogen receptor (ER)-progesterone receptor (PR)-HER2+; n = 19]. However, we established lines from 3 ER-PR-HER2+ tumors, one ER+PR-HER2-, one ER+PR+HER2-, and one "triple-positive" (ER+PR+HER2+) tumor. Serially passaged xenografts show biologic consistency with the tumor of origin, are phenotypically stable across multiple transplant generations at the histologic, transcriptomic, proteomic, and genomic levels, and show comparable treatment responses as those observed clinically. Xenografts representing 12 patients, including 2 ER+ lines, showed metastasis to the mouse lung. These models thus serve as a renewable, quality-controlled tissue resource for preclinical studies investigating treatment response and metastasis

    Leaf-level photosynthetic capacity in lowland Amazonian and high elevation, Andean tropical moist forests of Peru

    Get PDF
    We examined whether variations in photosynthetic capacity are linked to variations in theenvironment and/or associated leaf traits for tropical moist forests (TMFs) in the Andes/west-ern Amazon regions of Peru. We compared photosynthetic capacity (maximal rate of carboxylation of Rubisco (Vcmax),and the maximum rate of electron transport (Jmax)), leaf mass, nitrogen (N) and phosphorus(P) per unit leaf area (Ma,Naand Pa, respectively), and chlorophyll from 210 species at 18field sites along a 3300-m elevation gradient. Western blots were used to quantify the abun-dance of the CO₂-fixing enzyme Rubisco. Area- and N-based rates of photosynthetic capacity at 25°C were higher in upland than low-land TMFs, underpinned by greater investment of N in photosynthesis in high-elevation trees. Soil [P] and leaf Pa were key explanatory factors for models of area-based Vcmax and Jmax but did not account for variations in photosynthetic N-use efficiency. At any given Na and Pa, the fraction of N allocated to photosynthesis was higher in upland than lowland species. For a smallsubset of lowland TMF trees examined, a substantial fraction of Rubisco was inactive. These results highlight the importance of soil- and leaf-P in defining the photosyntheticcapacity of TMFs, with variations in N allocation and Rubisco activation state further influenc-ing photosynthetic rates and N-use efficiency of these critically important forests

    Anisotropy effects on the plasmonic response of nanoparticle dimers

    Get PDF
    We present an ab initio study of the anisotropy and atomic relaxation effects on the optical properties of nanoparticle dimers. Special emphasis is placed on the hybridization process of localized surface plasmons, plasmon-mediated photoinduced currents, and electric-field enhancement in the dimer junction. We show that there is a critical range of separations between the clusters (0.1–0.5 nm) in which the detailed atomic structure in the junction and the relative orientation of the nanoparticles have to be considered to obtain quantitative predictions for realistic nanoplasmonic devices. It is worth noting that this regime is characterized by the emergence of electron tunneling as a response to the driven electromagnetic field. The orientation of the particles not only modifies the attainable electric field enhancement but can lead to qualitative changes in the optical absorption spectrum of the system.We thankfully acknowledge financial support by the European Research Council (ERC-2010-AdG Proposal No. 267374 and ERC-2011-AdG Proposal No. 290891), the Spanish Government (Grants MAT2011-28581-C02-01, FIS2013-46159-C3-1-P, and MAT2014-53432-C5-5-R), and the Basque Country Government (Grupos Consolidados IT-578-13).Peer Reviewe

    Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms

    Get PDF
    Sex differences in life history, physiology, and behavior are nearly ubiquitous across taxa, owing to sex-specific selection that arises from different reproductive strategies of the sexes. The pace-of-life syndrome (POLS) hypothesis predicts that most variation in such traits among individuals, populations, and species falls along a slow-fast pace-of-life continuum. As a result of their different reproductive roles and environment, the sexes also commonly differ in pace-of-life, with important consequences for the evolution of POLS. Here, we outline mechanisms for how males and females can evolve differences in POLS traits and in how such traits can covary differently despite constraints resulting from a shared genome. We review the current knowledge of the genetic basis of POLS traits and suggest candidate genes and pathways for future studies. Pleiotropic effects may govern many of the genetic correlations, but little is still known about the mechanisms involved in trade-offs between current and future reproduction and their integration with behavioral variation. We highlight the importance of metabolic and hormonal pathways in mediating sex differences in POLS traits; however, there is still a shortage of studies that test for sex specificity in molecular effects and their evolutionary causes. Considering whether and how sexual dimorphism evolves in POLS traits provides a more holistic framework to understand how behavioral variation is integrated with life histories and physiology, and we call for studies that focus on examining the sex-specific genetic architecture of this integration

    Comparison of different Aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data

    Get PDF
    Deriving absorption coefficients from Aethalometer attenuation data requires different corrections to compensate for artifacts related to filter-loading effects, scattering by filter fibers, and scattering by aerosol particles. In this study, two different correction schemes were applied to seven-wavelength Aethalometer data, using multi-angle absorption photometer (MAAP) data as a reference absorption measurement at 637 nm. The compensation algorithms were compared to five-wavelength offline absorption measurements obtained with a multi-wavelength absorbance analyzer (MWAA), which serves as a multiple-wavelength reference measurement. The online measurements took place in the Amazon rainforest, from the wet-to-dry transition season to the dry season (June\u2013September 2014). The mean absorption coefficient (at 637 nm) during this period was 1.8 +/-2.1Mm-1, with a maximum of 15.9Mm-1. Under these conditions, the filter-loading compensation was negligible. One of the correction schemes was found to artificially increase the short-wavelength absorption coefficients. It was found that accounting for the aerosol optical properties in the scattering compensation significantly affects the absorption \uc5ngstr\uf6m exponent (\ue5ABS/ retrievals. Proper Aethalometer data compensation schemes are crucial to retrieve the correct \ue5ABS, which is commonly implemented in brown carbon contribution calculations. Additionally, we found that the wavelength dependence of uncompensated Aethalometer attenuation data significantly correlates with the \ue5ABS retrieved from offline MWAA measurements

    Circadian Modulation of Neurons and Astrocytes Controls Synaptic Plasticity in Hippocampal Area CA1

    Get PDF
    Most animal species operate according to a 24-h period set by the suprachiasmatic nucleus (SCN) of the hypothalamus. The rhythmic activity of the SCN modulates hippocampal-dependent memory, but the molecular and cellular mechanisms that account for this effect remain largely unknown. Here, we identify cell-type-specific structural and functional changes that occur with circadian rhythmicity in neurons and astrocytes in hippocampal area CA1. Pyramidal neurons change the surface expression of NMDA receptors. Astrocytes change their proximity to synapses. Together, these phenomena alter glutamate clearance, receptor activation, and integration of temporally clustered excitatory synaptic inputs, ultimately shaping hippocampal-dependent learning in vivo. We identify corticosterone as a key contributor to changes in synaptic strength. These findings highlight important mechanisms through which neurons and astrocytes modify the molecular composition and structure of the synaptic environment, contribute to the local storage of information in the hippocampus, and alter the temporal dynamics of cognitive processing
    corecore