498 research outputs found
On multigraded generalizations of Kirillov-Reshetikhin modules
We study the category of Z^l-graded modules with finite-dimensional graded
pieces for certain Z+^l-graded Lie algebras. We also consider certain Serre
subcategories with finitely many isomorphism classes of simple objects. We
construct projective resolutions for the simple modules in these categories and
compute the Ext groups between simple modules. We show that the projective
covers of the simple modules in these Serre subcategories can be regarded as
multigraded generalizations of Kirillov-Reshetikhin modules and give a
recursive formula for computing their graded characters
The camera of the fifth H.E.S.S. telescope. Part I: System description
In July 2012, as the four ground-based gamma-ray telescopes of the H.E.S.S.
(High Energy Stereoscopic System) array reached their tenth year of operation
in Khomas Highlands, Namibia, a fifth telescope took its first data as part of
the system. This new Cherenkov detector, comprising a 614.5 m^2 reflector with
a highly pixelized camera in its focal plane, improves the sensitivity of the
current array by a factor two and extends its energy domain down to a few tens
of GeV.
The present part I of the paper gives a detailed description of the fifth
H.E.S.S. telescope's camera, presenting the details of both the hardware and
the software, emphasizing the main improvements as compared to previous
H.E.S.S. camera technology.Comment: 16 pages, 13 figures, accepted for publication in NIM
Shape-induced force fields in optical trapping
Advances in optical tweezers, coupled with the proliferation of two-photon polymerization systems, mean that it is now becoming routine to fabricate and trap non-spherical particles. The shaping of both light beams and particles allows fine control over the flow of momentum from the optical to mechanical regimes. However, understanding and predicting the behaviour of such systems is highly complex in comparison with the traditional optically trapped microsphere. In this Article, we present a conceptually new and simple approach based on the nature of the optical force density. We illustrate the method through the design and fabrication of a shaped particle capable of acting as a passive force clamp, and we demonstrate its use as an optically trapped probe for imaging surface topography. Further applications of the design rules highlighted here may lead to new sensors for probing biomolecule mechanics, as well as to the development of optically actuated micromachines
Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations
A new iterative algorithm for solving initial data inverse problems from partial observations has been recently proposed in Ramdani et al. (Automatica 46(10), 1616-1625, 2010 ). Based on the concept of observers (also called Luenberger observers), this algorithm covers a large class of abstract evolution PDE's. In this paper, we are concerned with the convergence analysis of this algorithm. More precisely, we provide a complete numerical analysis for semi-discrete (in space) and fully discrete approximations derived using finite elements in space and an implicit Euler method in time. The analysis is carried out for abstract Schrödinger and wave conservative systems with bounded observation (locally distributed)
Prototype ATLAS IBL Modules using the FE-I4A Front-End Readout Chip
The ATLAS Collaboration will upgrade its semiconductor pixel tracking
detector with a new Insertable B-layer (IBL) between the existing pixel
detector and the vacuum pipe of the Large Hadron Collider. The extreme
operating conditions at this location have necessitated the development of new
radiation hard pixel sensor technologies and a new front-end readout chip,
called the FE-I4. Planar pixel sensors and 3D pixel sensors have been
investigated to equip this new pixel layer, and prototype modules using the
FE-I4A have been fabricated and characterized using 120 GeV pions at the CERN
SPS and 4 GeV positrons at DESY, before and after module irradiation. Beam test
results are presented, including charge collection efficiency, tracking
efficiency and charge sharing.Comment: 45 pages, 30 figures, submitted to JINS
Infrastructure for Detector Research and Development towards the International Linear Collider
The EUDET-project was launched to create an infrastructure for developing and
testing new and advanced detector technologies to be used at a future linear
collider. The aim was to make possible experimentation and analysis of data for
institutes, which otherwise could not be realized due to lack of resources. The
infrastructure comprised an analysis and software network, and instrumentation
infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture
Reconceptualizing CSR in the media industry as relational accountability
In this paper, we reconceptualize CSR in the media industries by combining empirical data with theoretical perspectives emerging from the communication studies and business ethics literature. We develop a new conception of what corporate responsibility in media organizations may mean in real terms by bringing Bardoel and d’Haenens’ (European Journal of Communication 19 165–194 2004) discussion of the different dimensions of media accountability into conversation with the empirical results from three international focus group studies, conducted in France, the USA and South Africa. To enable a critical perspective on our findings, we perform a philosophical analysis of its implications for professional, public, market, and political accountability in the media, drawing on the insights of Paul Virilio. We come to the conclusion that though some serious challenges to media accountability exist, the battle for responsible media industries is not lost. In fact, the speed characterizing the contemporary media environment may hold some promise for fostering the kind of relational accountability that could underpin a new understanding of CSR in the media
Quantum noise in the position measurement of a cavity mirror undergoing Brownian motion
We perform a quantum theoretical calculation of the noise power spectrum for
a phase measurement of the light output from a coherently driven optical cavity
with a freely moving rear mirror. We examine how the noise resulting from the
quantum back action appears among the various contributions from other noise
sources. We do not assume an ideal (homodyne) phase measurement, but rather
consider phase modulation detection, which we show has a different shot noise
level. We also take into account the effects of thermal damping of the mirror,
losses within the cavity, and classical laser noise. We relate our theoretical
results to experimental parameters, so as to make direct comparisons with
current experiments simple. We also show that in this situation, the standard
Brownian motion master equation is inadequate for describing the thermal
damping of the mirror, as it produces a spurious term in the steady-state phase
fluctuation spectrum. The corrected Brownian motion master equation [L. Diosi,
Europhys. Lett. {\bf 22}, 1 (1993)] rectifies this inadequacy.Comment: 12 pages revtex, 2 figure
Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint generator
We consider the problem of recovering the initial data (or initial state) of infinite-dimensional linear systems with unitary semigroups. It is well-known that this inverse problem is well posed if the system is exactly observable, but this assumption may be very restrictive in some applications. In this paper we are interested in systems which are not exactly observable, and in particular, where we cannot expect a full reconstruction. We propose to use the algorithm studied by Ramdani et al. in (Automatica 46:1616–1625, 2010) and prove that it always converges towards the observable part of the initial state. We give necessary and sufficient condition to have an exponential rate of convergence. Numerical simulations are presented to illustratethe theoretical results
Folding-competent and folding-defective forms of Ricin A chain have different fates following retrotranslocation from the endoplasmic reticulum
We report that a toxic polypeptide retaining the potential to refold upon dislocation from the endoplasmic reticulum (ER)
to the cytosol (ricin A chain; RTA) and a misfolded version that cannot (termed RTAΔ), follow ER-associated degradation
(ERAD) pathways in Saccharomyces cerevisiae that substantially diverge in the cytosol. Both polypeptides are dislocated
in a step mediated by the transmembrane Hrd1p ubiquitin ligase complex and subsequently degraded. Canonical
polyubiquitylation is not a prerequisite for this interaction because a catalytically inactive Hrd1p E3 ubiquitin ligase
retains the ability to retrotranslocate RTA, and variants lacking one or both endogenous lysyl residues also require the
Hrd1p complex. In the case of native RTA, we established that dislocation also depends on other components of the
classical ERAD-L pathway as well as an ongoing ER–Golgi transport. However, the dislocation pathways deviate
strikingly upon entry into the cytosol. Here, the CDC48 complex is required only for RTAΔ, although the involvement of
individual ATPases (Rpt proteins) in the 19S regulatory particle (RP) of the proteasome, and the 20S catalytic chamber
itself, is very different for the two RTA variants. We conclude that cytosolic ERAD components, particularly the
proteasome RP, can discriminate between structural features of the same substrate
- …
