69,514 research outputs found
Generalised Umbral Moonshine
Umbral moonshine describes an unexpected relation between 23 finite groups
arising from lattice symmetries and special mock modular forms. It includes the
Mathieu moonshine as a special case and can itself be viewed as an example of
the more general moonshine phenomenon which connects finite groups and
distinguished modular objects. In this paper we introduce the notion of
generalised umbral moonshine, which includes the generalised Mathieu moonshine
[Gaberdiel M.R., Persson D., Ronellenfitsch H., Volpato R., Commun. Number
Theory Phys. 7 (2013), 145-223] as a special case, and provide supporting data
for it. A central role is played by the deformed Drinfel'd (or quantum) double
of each umbral finite group , specified by a cohomology class in
. We conjecture that in each of the 23 cases there exists a rule
to assign an infinite-dimensional module for the deformed Drinfel'd double of
the umbral finite group underlying the mock modular forms of umbral moonshine
and generalised umbral moonshine. We also discuss the possible origin of the
generalised umbral moonshine
A geometric constraint over k-dimensional objects and shapes subject to business rules
This report presents a global constraint that enforces rules written
in a language based on arithmetic and first-order logic to hold among a set of objects. In a first step, the rules are rewritten to Quantifier-Free Presburger Arithmetic (QFPA) formulas. Secondly, such
formulas are compiled to generators of k-dimensional forbidden sets. Such generators are a generalization of the indexicals of cc(FD). Finally, the forbidden sets generated by such indexicals are
aggregated by a sweep-based algorithm and used for filtering. The business rules allow to express a great variety of packing and placement constraints, while admitting efficient and effective filtering of the domain variables of the k-dimensional object, without the need to use spatial data structures. The constraint was used to directly encode the packing knowledge of a major car manufacturer and tested on a set of real packing problems under these rules, as well as on a packing-unpacking problem
Collective Excitations, Nambu-Goldstone Modes and Instability of Inhomogeneous Polariton Condensates
We study non-equilibrium microcavity-polariton condensates (MPCs) in a
harmonic potential trap theoretically. We calculate and analyze the steady
state, collective-excitation modes and instability of MPCs. Within excitation
modes, there exist Nambu-Goldstone modes that can reveal the pattern of the
spontaneous symmetry breaking of MPCs. Bifurcation of the stable and unstable
modes is identified in terms of the pumping power and spot size. The unstable
mechanism associated with the inward supercurrent flow is characterized by the
existence of a supersonic region within the condensate.Comment: 16 pages, 3 figure
Final-State Phases in Baryon-Antibaryon Decays
The recent observation of the decay \ob \to \Lambda_c^+ \bar p suggests
that related decays may soon be visible at colliders. It is shown how
these decays can shed light on strong final-state phases and amplitudes
involving the spectator quark, both of which are normally expected to be small
in B decays.Comment: 14 pages, LaTeX, 2 figures, submitted to Phys. Rev. D, references and
discussion of helicity amplitudes adde
Exclusive Hadronic D Decays to eta' and eta
Hadronic decay modes and
are studied in the generalized
factorization approach. Form factors for transitions
are carefully evaluated by taking into account the wave function normalization
of the eta and eta'. The predicted branching ratios are generally in agreement
with experiment except for and
; the calculated decay rates for the first two decay modes
are too small by an order of magnitude. We show that the weak decays and followed by resonance-induced final-state
interactions (FSI), which are amenable technically, are able to enhance the
branching ratios of and dramatically
without affecting the agreement between theory and experiment for and . We argue that it is difficult to understand
the observed large decay rates of and
simultaneously; FSI, W-annihilation and the production of excess eta' from
gluons are not helpful in this regard. The large discrepancy between the
factorization hypothesis and experiment for the ratio of
and remains as an enigma.Comment: 15 pages, 1 figure, to appear in Phys. Rev. D. Form factors for D to
eta and eta' transitions are slightly change
A Large Effective Phonon Magnetic Moment in a Dirac Semimetal
We investigated the magnetoterahertz response of the Dirac semimetal
CdAs and observed a particularly low frequency optical phonon, as well
as a very prominent and field sensitive cyclotron resonance. As the cyclotron
frequency is tuned with field to pass through the phonon, the phonon become
circularly polarized as shown by a notable splitting in their response to
right- and left-hand polarized light. This splitting can be expressed as an
effective phonon magnetic moment that is approximately 2.7 times the Bohr
magneton, which is almost four orders of magnitude larger than ab initio
calculations predict for phonon magnetic moments in nonmagnetic insulators.
This exceedingly large value is due to the coupling of the phonons to the
cyclotron motion and is controlled directly by the electron-phonon coupling
constant. This field tunable circular-polarization selective coupling provides
new functionality for nonlinear optics to create light-induced topological
phases in Dirac semimetals.Comment: 15 pages for main text and SI; To appear in Nano Letters (2020
Hadronic B Decays to Charmed Baryons
We study exclusive B decays to final states containing a charmed baryon
within the pole model framework. Since the strong coupling for is larger than that for , the two-body charmful decay
has a rate larger than
as the former proceeds via the pole while the latter via the
pole. By the same token, the three-body decay receives less baryon-pole contribution than
. However, because the important charmed-meson
pole diagrams contribute constructively to the former and destructively to the
latter, has a rate slightly larger than
. It is found that one quarter of the rate comes from the resonant contributions. We discuss
the decays and
and stress that they are not color suppressed even though they can only proceed
via an internal W emission.Comment: 25 pages, 6 figure
- …
