10,888 research outputs found
Unified model for vortex-string network evolution
We describe and numerically test the velocity-dependent one-scale (VOS)
string evolution model, a simple analytic approach describing a string network
with the averaged correlation length and velocity. We show that it accurately
reproduces the large-scale behaviour (in particular the scaling laws) of
numerical simulations of both Goto-Nambu and field theory string networks. We
explicitly demonstrate the relation between the high-energy physics approach
and the damped and non-relativistic limits which are relevant for condensed
matter physics. We also reproduce experimental results in this context and show
that the vortex-string density is significantly reduced by loop production, an
effect not included in the usual `coarse-grained' approach.Comment: 5 pages; v2: cosmetic changes, version to appear in PR
Semiconductor superlattice photodetectors
A superlattice photomultiplier and a photodetector based on the real space transfer mechanism were studied. The wavelength for the first device is of the order of a micron or flexible corresponding to the bandgap absorption in a semiconductor. The wavelength for the second device is in the micron range (about 2 to 12 microns) corresponding to the energy of the conduction band edge discontinuity between an Al/(sub x)Ga(sub 1-x)As and GaAs interface. Both devices are described
Extremal covariant measurements
We characterize the extremal points of the convex set of quantum measurements
that are covariant under a finite-dimensional projective representation of a
compact group, with action of the group on the measurement probability space
which is generally non-transitive. In this case the POVM density is made of
multiple orbits of positive operators, and, in the case of extremal
measurements, we provide a bound for the number of orbits and for the rank of
POVM elements. Two relevant applications are considered, concerning state
discrimination with mutually unbiased bases and the maximization of the mutual
information.Comment: 11 pages, no figure
A quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors
We describe a new polynomial time quantum algorithm that uses the quantum
fast fourier transform to find eigenvalues and eigenvectors of a Hamiltonian
operator, and that can be applied in cases (commonly found in ab initio physics
and chemistry problems) for which all known classical algorithms require
exponential time. Applications of the algorithm to specific problems are
considered, and we find that classically intractable and interesting problems
from atomic physics may be solved with between 50 and 100 quantum bits.Comment: 10 page
Switchable coupling for superconducting qubits using double resonance in the presence of crosstalk
Several methods have been proposed recently to achieve switchable coupling
between superconducting qubits. We discuss some of the main considerations
regarding the feasibility of implementing one of those proposals: the
double-resonance method. We analyze mainly issues related to the achievable
effective coupling strength and the effects of crosstalk on this coupling
approach. We also find a new, crosstalk-assisted coupling channel that can be
an attractive alternative when implementing the double-resonance coupling
proposal.Comment: 4 pages, 3 figure
Angular distribution of photoluminescence as a probe of Bose Condensation of trapped excitons
Recent experiments on two-dimensional exciton systems have shown the excitons
collect in shallow in-plane traps. We find that Bose condensation in a trap
results in a dramatic change of the exciton photoluminescence (PL) angular
distribution. The long-range coherence of the condensed state gives rise to a
sharply focussed peak of radiation in the direction normal to the plane. By
comparing the PL profile with and without Bose Condensation we provide a simple
diagnostic for the existence of a Bose condensate. The PL peak has strong
temperature dependence due to the thermal order parameter phase fluctuations
across the system. The angular PL distribution can also be used for imaging
vortices in the trapped condensate. Vortex phase spatial variation leads to
destructive interference of PL radiation in certain directions, creating nodes
in the PL distribution that imprint the vortex configuration.Comment: 4 pages, 3 figure
Semiconductor superlattice photodetectors
Two novel types of superlattice photodetectors were studied. The first was a superlattice photomultiplier and the second a photodetector based on the real space transfer mechanism. A summary of the results is presented
Quantum walk approach to search on fractal structures
We study continuous-time quantum walks mimicking the quantum search based on
Grover's procedure. This allows us to consider structures, that is, databases,
with arbitrary topological arrangements of their entries. We show that the
topological structure of the database plays a crucial role by analyzing, both
analytically and numerically, the transition from the ground to the first
excited state of the Hamiltonian associated with different (fractal)
structures. Additionally, we use the probability of successfully finding a
specific target as another indicator of the importance of the topological
structure.Comment: 15 pages, 14 figure
Electronic and optical properties of quantum wells embedded in wrinkled nanomembranes
The authors theoretically investigate quantum confinement and transition
energies in quantum wells (QWs) asymmetrically positioned in wrinkled
nanomembranes. Calculations reveal that the wrinkle profile induces both blue-
and redshifts depending on the lateral position of the QW probed. Relevant
radiative transistions include the ground state of the electron (hole) and
excited states of the hole (electron). Energy shifts as well as stretchability
of the structure are studied as a function of wrinkle amplitude and period.
Large tunable bandwidths of up to 70 nm are predicted for highly asymmetric
wrinkled QWs.Comment: 3 pages, 4 figures. The following article has been submitted to
Applied Physics Letters. After it is published, it will be found at
http://apl.aip.or
- …
