151,963 research outputs found
Spatiotemporal instability of a confined capillary jet
Recent experimental studies on the instability appearance of capillary jets
have revealed the capabilities of linear spatiotemporal instability analysis to
predict the parametrical map where steady jetting or dripping takes place. In
this work, we present an extensive analytical, numerical and experimental
analysis of confined capillary jets extending previous studies. We propose an
extended, accurate analytic model in the limit of low Reynolds flows, and
introduce a numerical scheme to predict the system response when the liquid
inertia is not negligible. Theoretical predictions show a remarkable accuracy
with results from the extensive experimental exploration provided.Comment: Submitted to the Physical Review E (20-March-2008
Raising Bi-O bands above the Fermi energy level of hole-doped BiSrCaCuO and other cuprate superconductors
The Fermi surface (FS) of BiSrCaCuO
(Bi2212) predicted by band theory displays Bi-related pockets around the
point, which have never been observed experimentally. We show that
when the effects of hole doping either by substituting Pb for Bi or by adding
excess O in Bi2212 are included, the Bi-O bands are lifted above the Fermi
energy () and the resulting first-principles FS is in remarkable accord
with measurements. With decreasing hole-doping the Bi-O bands drop below
and the system self-dopes below a critical hole concentration. Computations on
other Bi- as well as Tl- and Hg-based compounds indicate that lifting of the
cation-derived band with hole doping is a general property of the electronic
structures of the cuprates.Comment: 4 pages, 4 figures; PRL (2006, in press
Response-surface-model-based system sizing for nearly/net zero energy buildings under uncertainty
Properly treating uncertainty is critical for robust system sizing of nearly/net zero energy buildings (ZEBs). To treat uncertainty, the conventional method conducts Monte Carlo simulations for thousands of possible design options, which inevitably leads to computation load that is heavy or even impossible to handle. In order to reduce the number of Monte Carlo simulations, this study proposes a response-surface-model-based system sizing method. The response surface models of design criteria (i.e., the annual energy match ratio, self-consumption ratio and initial investment) are established based on Monte Carlo simulations for 29 specific design points which are determined by Box-Behnken design. With the response surface models, the overall performances (i.e., the weighted performance of the design criteria) of all design options (i.e., sizing combinations of photovoltaic, wind turbine and electric storage) are evaluated, and the design option with the maximal overall performance is finally selected. Cases studies with 1331 design options have validated the proposed method for 10,000 randomly produced decision scenarios (i.e., users’ preferences to the design criteria). The results show that the established response surface models reasonably predict the design criteria with errors no greater than 3.5% at a cumulative probability of 95%. The proposed method reduces the number of Monte Carlos simulations by 97.8%, and robustly sorts out top 1.1% design options in expectation. With the largely reduced Monte Carlo simulations and high overall performance of the selected design option, the proposed method provides a practical and efficient means for system sizing of nearly/net ZEBs under uncertainty
Parallel dynamics between non-Hermitian and Hermitian systems
We study the connection between a family of non-Hermitian Hamiltonians H and
Hermitian ones H based on exact solutions. In general, for a dynamic process in
a non-Hermitian system H, there always exists a parallel dynamic process
governed by the corresponding Hermitian conjugate Hamiltonian H{\dag}. We show
that a linear superposition of the two parallel dynamics is exactly equivalent
to the time evolution of a state under a Hermitian Hamiltonian H. It reveals a
novel connection between non-Hermitian and Hermitian systems
Earth Matter Effects in Detection of Supernova Neutrinos
We calculated the matter effect, including both the Earth and supernova, on
the detection of neutrinos from type II supernovae at the proposed Daya Bay
reactor neutrino experiment. It is found that apart from the dependence on the
flip probability P_H inside the supernova and the mass hierarchy of neutrinos,
the amount of the Earth matter effect depends on the direction of the incoming
supernova neutrinos, and reaches the biggest value when the incident angle of
neutrinos is around 93^\circ. In the reaction channel \bar{\nu}_e + p --> e^+ +
n the Earth matter effect can be as big as about 12%. For other detection
processes the amount of the Earth matter effect is a few per cent.Comment: 13 pages, 5 figure
- …
