73,717 research outputs found
Prototype laser-diode-pumped solid state laser transmitters
Monolithic, diode-pumped Nd:YAG ring lasers can provide diffraction-limited, single-frequency, narrow-linewidth, tunable output which is adequate for use as a local oscillator in a coherent communication system. A laser was built which had a linewidth of about 2 kHz, a power of 5 milliwatts, and which was tunable over a range of 30 MHz in a few microseconds. This laser was phase-locked to a second, similar laser. This demonstrates that the powerful technique of heterodyne detection is possible with a diode-pumped laser used as the local oscillator. Laser diode pumping of monolithic Nd:YAG rings can lead to output powers of hundreds of milliwatts from a single laser. A laser was built with a single-mode output of 310 mW. Several lasers can be chained together to sum their power, while maintaining diffraction-limited, single frequency operation. This technique was demonstrated with two lasers, with a total output of 340 mW, and is expected to be practical for up to about ten lasers. Thus with lasers of 310 mW, output of up to 3 W is possible. The chaining technique, if properly engineered, results in redundancy. The technique of resonant external modulation and doubling is designed to efficiently convert the continuous wave, infrared output of our lasers into low duty-cycle pulsed green output. This technique was verified through both computer modeling and experimentation. Further work would be necessary to develop a deliverable system using this technique
Local Density of States and Angle-Resolved Photoemission Spectral Function of an Inhomogeneous D-wave Superconductor
Nanoscale inhomogeneity seems to be a central feature of the d-wave
superconductivity in the cuprates. Such a feature can strongly affect the local
density of states (LDOS) and the spectral weight functions. Within the
Bogoliubov-de Gennes formalism we examine various inhomogeneous configurations
of the superconducting order parameter to see which ones better agree with the
experimental data. Nanoscale large amplitude oscillations in the order
parameter seem to fit the LDOS data for the underdoped cuprates. The
one-particle spectral function for a general inhomogeneous configuration
exhibits a coherent peak in the nodal direction. In contrast, the spectral
function in the antinodal region is easily rendered incoherent by the
inhomogeneity. This throws new light on the dichotomy between the nodal and
antinodal quasiparticles in the underdoped cuprates.Comment: 5 pages, 9 pictures. Phys. Rev. B (in press
k-dependent SU(4) model of high-temperature superconductivity and its coherent-state solutions
We extend the SU(4) model [1-5] for high-Tc superconductivity to an SU(4)k
model that permits explicit momentum (k) dependence in predicted observables.
We derive and solve gap equations that depend on k, temperature, and doping
from the SU(4)k coherent states, and show that the new SU(4)k model reduces to
the original SU(4) model for observables that do not depend explicitly on
momentum. The results of the SU(4)k model are relevant for experiments such as
ARPES that detect explicitly k-dependent properties. The present SU(4)k model
describes quantitatively the pseudogap temperature scale and may explain why
the ARPES-measured T* along the anti-nodal direction is larger than other
measurements that do not resolve momentum. It also provides an immediate
microscopic explanation for Fermi arcs observed in the pseudogap region. In
addition, the model leads to a prediction that even in the underdoped regime,
there exist doping-dependent windows around nodal points in the k-space, where
antiferromagnetism may be completely suppressed for all doping fractions,
permitting pure superconducting states to exist.Comment: 10 pages, 7 figure
Bridgeness: A Local Index on Edge Significance in Maintaining Global Connectivity
Edges in a network can be divided into two kinds according to their different
roles: some enhance the locality like the ones inside a cluster while others
contribute to the global connectivity like the ones connecting two clusters. A
recent study by Onnela et al uncovered the weak ties effects in mobile
communication. In this article, we provide complementary results on document
networks, that is, the edges connecting less similar nodes in content are more
significant in maintaining the global connectivity. We propose an index named
bridgeness to quantify the edge significance in maintaining connectivity, which
only depends on local information of network topology. We compare the
bridgeness with content similarity and some other structural indices according
to an edge percolation process. Experimental results on document networks show
that the bridgeness outperforms content similarity in characterizing the edge
significance. Furthermore, extensive numerical results on disparate networks
indicate that the bridgeness is also better than some well-known indices on
edge significance, including the Jaccard coefficient, degree product and
betweenness centrality.Comment: 10 pages, 4 figures, 1 tabl
Unification of bulk and interface electroresistive switching in oxide systems
We demonstrate that the physical mechanism behind electroresistive switching
in oxide Schottky systems is electroformation, as in insulating oxides.
Negative resistance shown by the hysteretic current-voltage curves proves that
impact ionization is at the origin of the switching. Analyses of the
capacitance-voltage and conductance-voltage curves through a simple model show
that an atomic rearrangement is involved in the process. Switching in these
systems is a bulk effect, not strictly confined at the interface but at the
charge space region.Comment: 4 pages, 3 figures, accepted in PR
Noise bridges dynamical correlation and topology in coupled oscillator networks
We study the relationship between dynamical properties and interaction
patterns in complex oscillator networks in the presence of noise. A striking
finding is that noise leads to a general, one-to-one correspondence between the
dynamical correlation and the connections among oscillators for a variety of
node dynamics and network structures. The universal finding enables an accurate
prediction of the full network topology based solely on measuring the dynamical
correlation. The power of the method for network inference is demonstrated by
the high success rate in identifying links for distinct dynamics on both model
and real-life networks. The method can have potential applications in various
fields due to its generality, high accuracy and efficiency.Comment: 2 figures, 2 tables. Accepted by Physical Review Letter
Analysis of B-> \phi K Decays in QCD Factorization
We analyze the decay within the framework of QCD-improved
factorization. We found that although the twist-3 kaon distribution amplitude
dominates the spectator interactions, it will suppress the decay rates
slightly. The weak annihilation diagrams induced by penguin
operators, which are formally power-suppressed by order , are
chirally and logarithmically enhanced. Therefore, these annihilation
contributions are not subject to helicity suppression and can be sizable. The
predicted branching ratio of is in
the absence of annihilation contributions and it becomes
when annihilation effects are taken into
account. The prediction is consistent with CLEO and BaBar data but smaller than
the BELLE result.Comment: 13 pages, 3 figures. A major change for the presentation of
branching-ratio predictions. Experimental data are update
A Cellular Automaton Model for Diffusive and Dissipative Systems
We study a cellular automaton model, which allows diffusion of energy (or
equivalently any other physical quantities such as mass of a particular
compound) at every lattice site after each timestep. Unit amount of energy is
randomly added onto a site. Whenever the local energy content of a site reaches
a fixed threshold , energy will be dissipated. Dissipation of energy
propagates to the neighboring sites provided that the energy contents of those
sites are greater than or equal to another fixed threshold . Under such dynamics, the system evolves into three different types of
states depending on the values of and as reflected in their
dissipation size distributions, namely: localized peaks, power laws, or
exponential laws. This model is able to describe the behaviors of various
physical systems including the statistics of burst sizes and burst rates in
type-I X-ray bursters. Comparisons between our model and the famous forest-fire
model (FFM) are made.Comment: in REVTEX 3.0. Figures available on request. Extensively revised.
Accepted by Phys.Rev.
- …
