3,841 research outputs found

    Pion Energy Reconstruction by the Local Hadronic Calibration Method with ATLAS Combined Test Beam 2004 data

    Get PDF
    The pion energy reconstruction by the local hadronic calibration method on the basis of the 2004 combined test beam data in the energy range 10 -- 350 GeV and η=0.25\eta = 0.25 is performed. In this method energies deposited in each cell are weighted. The weights are determined by the Monte Carlo simulation using Calibration Hits software. We have modified this method by applying cuts in weights. The obtained fractional energy resolution with the conventional method of determination of the energy deposit in the dead material between LAr and Tile calorimeters is σ/E=(67±2)%/E(3.9±0.2)%(95±22)%/E\sigma/E = (67\pm2)\%/\sqrt{E} \oplus (3.9\pm0.2)\% \oplus (95\pm22)\%/E. This is about 1.5 times better than the results for the hadronic calibration method obtained by the Oxford-Stockholm group and slightly better than the H1 method results for CTB04 obtained by Pisa group. The energy linearity is within ±\pm1\%. We have determined the general normalization constant of 0.91 for which the mean value linearity for the weight cut of 1.05 is about 1. At using this normalization constant the energy resolution has not worsen. We have corrected the cesium miscalibration of the Tile1Tile_1 and Tile2Tile_2 longitudinal samplings. The mean value of energy linearity has been increased by about 1\% and becomes equal to 1.002±\pm0.002. The energy resolution did not change. We have performed weighting without knowing of the beam energies. For this the special procedure has been developed. In this case the energy resolution shows 9\% degradation. Linearities are within ±\pm1\%. We have applied the Neural Networks to the determination of the energy deposit between LAr and Tile calorimeters. The essential improvement of energy resolution is obtained. In this case we have reached the projected energy resolution for hadrons in the ATLAS detector σ/E=50%/E3%\sigma/E = 50\%/\sqrt{E} \oplus 3\%

    Study of the Transition Effect with the ATLAS Tile Calorimeter

    Get PDF
    With the aim to establish the electromagnetic energy scale of the ATLAS Tile calorimeter and understanding the performance of the calorimeter to electrons 12% of modules have been exposed in electron beams with various energies. On a basis of the obtained electromagnetic calibration constants we have determined the e/mip values in dependence of the absorber thickness using different beam incident angles. We have observed the transition effect (e/mip < 1) and, for the first time, its behaviour as a function of the absorber thickness --- the e/mip ratio decreases logarithmically when the absorber thickness increases this is well described by the GEANT4 version 6.2 Monte Carlo simulation. These results are important for precision electromagnetic energy scale determination for the ATLAS Tile calorimeter

    Artificial Neural Networks for reconstruction of energy losses in dead materials between barrel LAr and Tile calorimeters: exploration and results

    Get PDF
    In the course of computational experiments with Monte-Carlo events for ATLAS Combined Test Beam 2004 setup Artificial Neural Networks (ANN) technique was applied for reconstruction of energy losses in dead materials between barrel LAr and Tile calorimeters (Edm). The constructed ANN procedures exploit as their input vectors the information content of different sets of variables (parameters) which describe particular features of the hadronic shower of an event in ATLAS calorimeters. It was shown that application of ANN procedures allows one to reach 40% reduction of the Edm reconstruction error compared to the conventional procedure used in ATLAS collaboration. Impact of various features of a shower on the precision of EdmEdm reconstruction is presented in detail. It was found that longitudinal shower profile information brings greater improvement in EdmEdm reconstruction accuracy than cell energies information in LAr3 and Tile1 samplings

    Electromagnetic Cell Level Calibration for ATLAS Tile Calorimeter Modules

    Get PDF
    We have determined the electromagnetic calibration constants of 11% TileCal modules exposed to electron beams with incident angles of 20 and 90 degrees. The gain of all the calorimeter cells have been pre-equalized using the radioactive Cs-source that will be also used in situ. The average values for these modules are equal to: for the flat filter method 1.154+/-0.002 pC/GeV and 1.192+/-0.002 pC/GeV for 20 and 90 degrees, for the fit method 1.040+/-0.002 pC/GeV and 1.068+/-0.003 pC/GeV, respectively. These average values for all cells of calibrated modules agree with the weighted average calibration constants for separate modules within the errors. Using the individual calibration constants for every module the RMS spread value of constants will be 1.9+/-0.1 %. In the case of the global constant this value will be 2.6+/-0.1 %. Finally, we present the global constants which should be used for the electromagnetic calibration of the ATLAS Tile hadronic calorimeter data in the ATHENA framework. These constants are equal to 1.15 pC/GeV in the case of the flat filter method and 1.04 pC/GeV for the fit one

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Inclusive search for same-sign dilepton signatures in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    An inclusive search is presented for new physics in events with two isolated leptons (e or mu) having the same electric charge. The data are selected from events collected from p p collisions at root s = 7 TeV by the ATLAS detector and correspond to an integrated luminosity of 34 pb(-1). The spectra in dilepton invariant mass, missing transverse momentum and jet multiplicity are presented and compared to Standard Model predictions. In this event sample, no evidence is found for contributions beyond those of the Standard Model. Limits are set on the cross-section in a fiducial region for new sources of same-sign high-mass dilepton events in the ee, e mu and mu mu channels. Four models predicting same-sign dilepton signals are constrained: two descriptions of Majorana neutrinos, a cascade topology similar to supersymmetry or universal extra dimensions, and fourth generation d-type quarks. Assuming a new physics scale of 1 TeV, Majorana neutrinos produced by an effective operator V with masses below 460 GeV are excluded at 95% confidence level. A lower limit of 290 GeV is set at 95% confidence level on the mass of fourth generation d-type quarks

    Measurement of inclusive two-particle angular correlations in pp collisions with the ATLAS detector at the LHC

    Get PDF
    We present a measurement of two-particle angular correlations in proton- proton collisions at s√=900 GeV and 7 TeV. The collision events were collected during 2009 and 2010 with the ATLAS detector at the Large Hadron Collider using a single-arm minimum bias trigger. Correlations are measured for charged particles produced in the kinematic range of transverse momentum p T  > 100 MeV and pseudorapidity |η| < 2.5. A complex structure in pseudorapidity and azimuth is observed at both collision energies. Results are compared to pythia 8 and herwig++ as well as to the AMBT2B, DW and Perugia 2011 tunes of pythia 6. The data are not satisfactorily described by any of these models
    corecore