22,279 research outputs found

    The dust and gas content of the Crab Nebula

    Get PDF
    We have constructed MOCASSIN photoionization plus dust radiative transfer models for the Crab Nebula core-collapse supernova (CCSN) remnant, using either smooth or clumped mass distributions, in order to determine the chemical composition and masses of the nebular gas and dust. We computed models for several different geometries suggested for the nebular matter distribution but found that the observed gas and dust spectra are relatively insensitive to these geometries, being determined mainly by the spectrum of the pulsar wind nebula which ionizes and heats the nebula. Smooth distribution models are ruled out since they require 16-49 Msun of gas to fit the integrated optical nebular line fluxes, whereas our clumped models re quire 7.0 Msun of gas. A global gas-phase C/O ratio of 1.65 by number is derived, along with a He/H number ratio of 1.85, neither of which can be matched by current CCSN yield predictions. A carbonaceous dust composition is favoured by the observed gas-phase C/O ratio: amorphous carbon clumped model fits to the Crab's Herschel and Spitzer infrared spectral energy distribution imply the presence of 0.18-0.27 Msun of dust, corresponding to a gas to dust mass ratio of 26-39. Mixed dust chemistry models can also be accommodated, comprising 0.11-0.13 Msun of amorphous carbon and 0.39-0.47 Msun of silicates. Power-law grain size distributions with mass distributions that are weighted towards the largest grain radii are derived, favouring their longer-term survival when they eventually interact with the interstellar medium. The total mass of gas plus dust in the Crab Nebula is 7.2 +/- 0.5 Msun, consistent with a progenitor star mass of 9 Msun.Comment: Accepted in Ap

    Three-Dimensional Ionisation, Dust RT and Chemical Modelling of Planetary Nebulae

    Get PDF
    The assumption of spherical symmetry is not justified for the vast majority of PNe. The interpretation of spatially-resolved observations cannot rely solely on the application of 1D codes, which may yield incorrect abundances determinations resulting in misleading conclusions. The 3D photoionisation code MOCASSIN (Monte CAarlo SimulationS of ionised Nebulae) is designed to remedy these shortcomings. The 3D transfer of both primary and secondary radiation is treated self-consistently without the need of approximations. The code was benchmarked and has been applied to the study of several PNe. The current version includes a fully self-consistent radiative transfer treatment for dust grains mixed within the gas, taking into account the microphysics of dust-gas interactions within the geometry-independent Monte Carlo transfer. The new code provides an excellent tool for the self-consistent analysis of dusty ionised regions showing asymmetries and/or density and chemical inhomogeneities. Work is currently in progress to incorporate the processes that dominate the thermal balance of photo-dissociation regions (PDRs), as well as the formation and destruction processes for all the main molecular species.Comment: 3 pages, to appear in Proc. IAU Symp. 234, Planetary Nebulae in Our Galaxy and Beyond (3-7 Apr 2006), eds. M.J. Barlow & R.H. Mendez (Cambridge Univ. Press

    Full-scale aerodynamic characteristics of a propellar installed on a small twin-engine aircraft wing panel

    Get PDF
    Full-scale measurements of shaft thrust and torque were made. Wind-tunnel speeds and blade angles were set for full-scale flight conditions. Excellent quality measurements were obtained of the thrust coefficient, the power coefficient, and the propeller efficiency for various values of the advance ratio and the blade incidence angle at 3/4-blade radius. A conventional propeller theory found in the literature was applied to the present results. Although thrust, power, and efficiency were somewhat overpredicted, the advance ratio for maximum efficiency was predicted quite accurately. It was found that, for some conditions, spinner drag could be significant. A simple correction that was based on the spinner base pressure substantially accounted for the changes in efficiency that resulted from this cause

    Mocassin: A fully three-dimensional Monte Carlo photoionization code

    Get PDF
    The study of photoionized environments is fundamental to many astrophysical problems. Up to the present most photoionization codes have numerically solved the equations of radiative transfer by making the extreme simplifying assumption of spherical symmetry. Unfortunately very few real astronomical nebulae satisfy this requirement. To remedy these shortcomings, a self-consistent, three-dimensional radiative transfer code has been developed using Monte Carlo techniques. The code, Mocassin, is designed to build realistic models of photoionized nebulae having arbitraries geometry and density distributions with both the stellar and diffuse radiation fields treated self-consistently. In addition, the code is capable of tretating on or more exciting stars located at non-central locations. The gaseous region is approximated by a cuboidal Cartesian grid composed of numerous cells. The physical conditions within each grid cell are determined by solving the thermal equilibrium and ionization balance equations This requires a knowledge of the local primary and secondary radiation fields, which are calculated self-consistently by locally simulating the individual processes of ionization and recombination. The main structure and computational methods used in the Mocassin code are described in this paper. Mocassin has been benchmarked against established one-dimensional spherically symmetric codes for a number of standard cases, as defined by the Lexington/Meudon photoionization workshops (Pequignot et al., 1986; Ferland et al., 1995; Pequignot et al., 2001)\citep{pequignot86,ferland95, pequignot01}. The results obtained for the benchmark cases are satisfactory and are presented in this paper. A performance analysis has also been carried out and is discussed here.Comment: 17 pages, 4 figures, 1 appendix Changes: appendix adde

    Chemical abundances for Hf 2-2, a planetary nebula with the strongest known heavy element recombination lines

    Get PDF
    We present high quality optical spectroscopic observations of the planetary nebula (PN) Hf 2-2. The spectrum exhibits many prominent optical recombination lines (ORLs) from heavy element ions. Analysis of the H {\sc i} and He {\sc i} recombination spectrum yields an electron temperature of 900\sim 900 K, a factor of ten lower than given by the collisionally excited [O {\sc iii}] forbidden lines. The ionic abundances of heavy elements relative to hydrogen derived from ORLs are about a factor of 70 higher than those deduced from collisionally excited lines (CELs) from the same ions, the largest abundance discrepancy factor (adf) ever measured for a PN. By comparing the observed O {\sc ii} λ\lambda4089/λ\lambda4649 ORL ratio to theoretical value as a function of electron temperature, we show that the O {\sc ii} ORLs arise from ionized regions with an electron temperature of only 630\sim 630 K. The current observations thus provide the strongest evidence that the nebula contains another previously unknown component of cold, high metallicity gas, which is too cool to excite any significant optical or UV CELs and is thus invisible via such lines. The existence of such a plasma component in PNe provides a natural solution to the long-standing dichotomy between nebular plasma diagnostics and abundance determinations using CELs on the one hand and ORLs on the other.Comment: 12 pages, 5 figures, accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    The Alexander-Orbach conjecture holds in high dimensions

    Full text link
    We examine the incipient infinite cluster (IIC) of critical percolation in regimes where mean-field behavior has been established, namely when the dimension d is large enough or when d>6 and the lattice is sufficiently spread out. We find that random walk on the IIC exhibits anomalous diffusion with the spectral dimension d_s=4/3, that is, p_t(x,x)= t^{-2/3+o(1)}. This establishes a conjecture of Alexander and Orbach. En route we calculate the one-arm exponent with respect to the intrinsic distance.Comment: 25 pages, 2 figures. To appear in Inventiones Mathematica

    Quenched invariance principle for random walks in balanced random environment

    Full text link
    We consider random walks in a balanced random environment in Zd\mathbb{Z}^d, d2d\geq 2. We first prove an invariance principle (for d2d\ge2) and the transience of the random walks when d3d\ge 3 (recurrence when d=2d=2) in an ergodic environment which is not uniformly elliptic but satisfies certain moment condition. Then, using percolation arguments, we show that under mere ellipticity, the above results hold for random walks in i.i.d. balanced environments.Comment: Published online in Probab. Theory Relat. Fields, 05 Oct 2010. Typo (in journal version) corrected in (26

    Meiotic DSB patterning: A multifaceted process

    Get PDF
    Meiosis is a specialized two-step cell division responsible for genome haploidization and the generation of genetic diversity during gametogenesis. An integral and distinctive feature of the meiotic program is the evolutionarily conserved initiation of homologous recombination (HR) by the developmentally programmed induction of DNA double-strand breaks (DSBs). The inherently dangerous but essential act of DSB formation is subject to multiple forms of stringent and self-corrective regulation that collectively ensure fruitful and appropriate levels of genetic exchange without risk to cellular survival. Within this article we focus upon an emerging element of this control—spatial regulation—detailing recent advances made in understanding how DSBs are evenly distributed across the genome, and present a unified view of the underlying patterning mechanisms employed
    corecore