1,294 research outputs found
A General Approach to Optomechanical Parametric Instabilities
We present a simple feedback description of parametric instabilities which
can be applied to a variety of optical systems. Parametric instabilities are of
particular interest to the field of gravitational-wave interferometry where
high mechanical quality factors and a large amount of stored optical power have
the potential for instability. In our use of Advanced LIGO as an example
application, we find that parametric instabilities, if left unaddressed,
present a potential threat to the stability of high-power operation
Thermo-optic noise in coated mirrors for high-precision optical measurements
Thermal fluctuations in the coatings used to make high-reflectors are
becoming significant noise sources in precision optical measurements and are
particularly relevant to advanced gravitational wave detectors. There are two
recognized sources of coating thermal noise, mechanical loss and thermal
dissipation. Thermal dissipation causes thermal fluctuations in the coating
which produce noise via the thermo-elastic and thermo-refractive mechanisms. We
treat these mechanisms coherently, give a correction for finite coating
thickness, and evaluate the implications for Advanced LIGO
Optimal configurations of filter cavity in future gravitational-wave detectors
Sensitivity of future laser interferometric gravitational-wave detectors can
be improved using squeezed light with frequency-dependent squeeze angle and/or
amplitude, which can be created using additional so-called filter cavities.
Here we compare performances of several variants of this scheme, proposed
during last years, assuming the case of a single relatively short (tens of
meters) filter cavity suitable for implementation already during the life cycle
of the second generation detectors, like Advanced LIGO. Using numerical
optimization, we show that the phase filtering scheme proposed by Kimble et al
[Phys.Rev.D 65, 022002 (2001)] looks as the best candidate for this scenario.Comment: 17 pages, 5 figure
Measurement of radiation-pressure-induced optomechanical dynamics in a suspended Fabry-Perot cavity
We report on experimental observation of radiation-pressure induced effects
in a high-power optical cavity. These effects play an important role in next
generation gravitational wave (GW) detectors, as well as in quantum
non-demolition (QND) interferometers. We measure the properties of an optical
spring, created by coupling of an intense laser field to the pendulum mode of a
suspended mirror; and also the parametric instability (PI) that arises from the
nonlinear coupling between acoustic modes of the cavity mirrors and the cavity
optical mode. Specifically, we measure an optical rigidity of N/m, and PI value .Comment: 4 pages, 3 figure
Self-cooling of a movable mirror to the ground state using radiation pressure
We show that one can cool a micro-mechanical oscillator to its quantum ground
state using radiation pressure in an appropriately detuned cavity
(self-cooling). From a simple theory based on Heisenberg-Langevin equations we
find that optimal self-cooling occurs in the good cavity regime, when the
cavity bandwidth is smaller than the mechanical frequency, but still larger
than the effective mechanical damping. In this case the intracavity field and
the vibrational mechanical mode coherently exchange their fluctuations. We also
present dynamical calculations which show how to access the mirror final
temperature from the fluctuations of the field reflected by the cavity.Comment: 4 pages, 3 figure
Negative optical inertia for enhancing the sensitivity of future gravitational-wave detectors
We consider enhancing the sensitivity of future gravitational-wave detectors
by using double optical spring. When the power, detuning and bandwidth of the
two carriers are chosen appropriately, the effect of the double optical spring
can be described as a "negative inertia", which cancels the positive inertia of
the test masses and thus increases their response to gravitational waves. This
allows us to surpass the free-mass Standard Quantum Limit (SQL) over a broad
frequency band, through signal amplification, rather than noise cancelation,
which has been the case for all broadband SQL-beating schemes so far considered
for gravitational-wave detectors. The merit of such signal amplification
schemes lies in the fact that they are less susceptible to optical losses than
noise cancelation schemes. We show that it is feasible to demonstrate such an
effect with the {\it Gingin High Optical Power Test Facility}, and it can
eventually be implemented in future advanced GW detectors.Comment: 7 pages, 3 figure
Gravitational-wave confusion background from cosmological compact binaries: Implications for future terrestrial detectors
Increasing the sensitivity of a gravitational-wave (GW) detector improves our
ability to measure the characteristics of detected sources. It also increases
the number of weak signals that contribute to the data. Because GW detectors
have nearly all-sky sensitivity, they can be subject to a confusion limit: Many
sources which cannot be distinguished may be measured simultaneously, defining
a stochastic noise floor to the sensitivity. For GW detectors operating at
present and for their planned upgrades, the projected event rate is
sufficiently low that we are far from the confusion-limited regime. However,
some detectors currently under discussion may have large enough reach to binary
inspiral that they enter the confusion-limited regime. In this paper, we
examine the binary inspiral confusion limit for terrestrial detectors. We
consider a broad range of inspiral rates in the literature, several planned
advanced gravitational-wave detectors, and the highly advanced "Einstein
Telescope" design. Though most advanced detectors will not be impacted by this
limit, the Einstein Telescope with a very low frequency "seismic wall" may be
subject to confusion noise. At a minimum, careful data analysis will be require
to separate signals which will appear confused. This result should be borne in
mind when designing highly advanced future instruments.Comment: 19 pages, 6 figures and 3 tables; accepted for publication in Phys.
Rev.
Entanglement of macroscopic test masses and the Standard Quantum Limit in laser interferometry
We show that the generation of entanglement of two heavily macroscopic
mirrors with masses of up to several kilograms are feasible with state of the
art techniques of high-precision laser interferometry. The basis of such a
demonstration would be a Michelson interferometer with suspended mirrors and
simultaneous homodyne detections at both interferometer output ports. We
present the connection between the generation of entanglement and the Standard
Quantum Limit (SQL) for a free mass. The SQL is a well-known reference limit in
operating interferometers for gravitational-wave detection and provides a
measure of when macroscopic entanglement can be observed in the presence of
realistic decoherence processes
Readout and Control of a Power-recycled Interferometric Gravitational-wave Antenna
Interferometric gravitational wave antennas are based on Michelson
interferometers whose sensitivity to small differential length changes has been
enhanced by adding multiple coupled optical resonators. The use of optical
cavities is essential for reaching the required sensitivity, but sets
challenges for the control system which must maintain the cavities near
resonance. The goal for the strain sensitivity of the Laser Interferometer
Gravitational-wave Observatory (LIGO) is 10^-21 rms, integrated over a 100 Hz
bandwidth centered at 150 Hz. We present the major design features of the LIGO
length and frequency sensing and control system which will hold the
differential length to within 5 10^-14 m of the operating point. We also
highlight the restrictions imposed by couplings of noise into the gravitational
wave readout signal and the required immunity against them.Comment: Presentation at ICALEPCS 2001, San Jose, November 2001, (WECT003), 3
page
Sub-SQL Sensitivity via Optical Rigidity in Advanced LIGO Interferometer with Optical Losses
The ``optical springs'' regime of the signal-recycled configuration of laser
interferometric gravitational-wave detectors is analyzed taking in account
optical losses in the interferometer arm cavities. This regime allows to obtain
sensitivity better than the Standard Quantum Limits both for a free test mass
and for a conventional harmonic oscillator. The optical losses restrict the
gain in sensitivity and achievable signal-to-noise ratio. Nevertheless, for
parameters values planned for the Advanced LIGO gravitational-wave detector,
this restriction is insignificant.Comment: 15 pages, 9 figure
- …
