10,596 research outputs found
Improved surface quality of anisotropically etched silicon {111} planes for mm-scale integrated optics
We have studied the surface quality of millimeter-scale optical mirrors
produced by etching CZ and FZ silicon wafers in potassium hydroxide to expose
the planes. We find that the FZ surfaces have four times lower noise
power at spatial frequencies up to . We conclude that mirrors
made using FZ wafers have higher optical quality
Buoyancy-driven inflow to a relic cold core: the gas belt in radio galaxy 3C 386
We report measurements from an XMM-Newton observation of the low-excitation
radio galaxy 3C 386. The study focusses on an X-ray-emitting gas belt, which
lies between and orthogonal to the radio lobes of 3C 386 and has a mean
temperature of keV, cooler than the extended group atmosphere.
The gas in the belt shows temperature structure with material closer to the
surrounding medium being hotter than gas closer to the host galaxy. We suggest
that this gas belt involves a `buoyancy-driven inflow' of part of the group-gas
atmosphere where the buoyant rise of the radio lobes through the ambient medium
has directed an inflow towards the relic cold core of the group.
Inverse-Compton emission from the radio lobes is detected at a level consistent
with a slight suppression of the magnetic field below the equipartition value.Comment: 11 pages, 10 figures, accepted for publication in MNRA
Kelvin-Helmholtz instabilities at the sloshing cold fronts in the Virgo cluster as a measure for the effective ICM viscosity
Sloshing cold fronts (CFs) arise from minor merger triggered gas sloshing.
Their detailed structure depends on the properties of the intra-cluster medium
(ICM): hydrodynamical simulations predict the CFs to be distorted by
Kelvin-Helmholtz instabilities (KHIs), but aligned magnetic fields, viscosity,
or thermal conduction can suppress the KHIs. Thus, observing the detailed
structure of sloshing CFs can be used to constrain these ICM properties. Both
smooth and distorted sloshing CFs have been observed, indicating that the KHI
is suppressed in some clusters, but not in all. Consequently, we need to
address at least some sloshing clusters individually before drawing general
conclusions about the ICM properties. We present the first detailed attempt to
constrain the ICM properties in a specific cluster from the structure of its
sloshing CF. Proximity and brightness make the Virgo cluster an ideal target.
We combine observations and Virgo-specific hydrodynamical sloshing simulations.
Here we focus on a Spitzer-like temperature dependent viscosity as a mechanism
to suppress the KHI, but discuss the alternative mechanisms in detail. We
identify the CF at 90 kpc north and north-east of the Virgo center as the best
location in the cluster to observe a possible KHI suppression. For viscosities
10% of the Spitzer value KHIs at this CF are suppressed. We describe
in detail the observable signatures at low and high viscosities, i.e. in the
presence or absence of KHIs. We find indications for a low ICM viscosity in
archival XMM-Newton data and demonstrate the detectability of the predicted
features in deep Chandra observations.Comment: Accepted for ApJ; 15 pages, 11 figures. A movie can be found here:
http://www.hs.uni-hamburg.de/DE/Ins/Per/Roediger/research.html#Virgo-viscou
Viscous Kelvin-Helmholtz instabilities in highly ionised plasmas
Transport coefficients in highly ionised plasmas like the intra-cluster
medium (ICM) are still ill-constrained. They influence various processes, among
them the mixing at shear flow interfaces due to the Kelvin-Helmholtz
instability (KHI). The observed structure of potential mixing layers can be
used to infer the transport coefficients, but the data interpretation requires
a detailed knowledge of the long-term evolution of the KHI under different
conditions. Here we present the first systematic numerical study of the effect
of constant and temperature-dependent isotropic viscosity over the full range
of possible values. We show that moderate viscosities slow down the growth of
the KHI and reduce the height of the KHI rolls and their rolling-up.
Viscosities above a critical value suppress the KHI. The effect can be
quantified in terms of the Reynolds number Re = U{\lambda}/{\nu}, where U is
the shear velocity, {\lambda} the perturbation length, and {\nu} the kinematic
viscosity. We derive the critical Re for constant and temperature dependent,
Spitzer-like viscosities, an empirical relation for the viscous KHI growth time
as a function of Re and density contrast, and describe special behaviours for
Spitzer-like viscosities and high density contrasts. Finally, we briefly
discuss several astrophysical situations where the viscous KHI could play a
role, i.e., sloshing cold fronts, gas stripping from galaxies, buoyant
cavities, ICM turbulence, and high velocity clouds.Comment: Accepted by MNRAS. 22 pages, 21 figure
Irregular sloshing cold fronts in the nearby merging groups NGC 7618 and UGC 12491: evidence for Kelvin-Helmholtz instabilities
We present results from two \sim30 ks Chandra observations of the hot
atmospheres of the merging galaxy groups centered around NGC 7618 and UGC
12491. Our images show the presence of arc-like sloshing cold fronts wrapped
around each group center and \sim100 kpc long spiral tails in both groups. Most
interestingly, the cold fronts are highly distorted in both groups, exhibiting
'wings' along the fronts. These features resemble the structures predicted from
non-viscous hydrodynamic simulations of gas sloshing, where Kelvin-Helmholtz
instabilities (KHIs) distort the cold fronts. This is in contrast to the
structure seen in many other sloshing and merger cold fronts, which are smooth
and featureless at the current observational resolution. Both magnetic fields
and viscosity have been invoked to explain the absence of KHIs in these smooth
cold fronts, but the NGC 7618/UGC 12491 pair are two in a growing number of
both sloshing and merger cold fronts that appear distorted. Magnetic fields
and/or viscosity may be able to suppress the growth of KHIs at the cold fronts
in some clusters and groups, but clearly not in all. We propose that the
presence or absence of KHI-distortions in cold fronts can be used as a measure
of the effective viscosity and/or magnetic field strengths in the ICM.Comment: ApJ, accepted. Uses emulateapj styl
Replication in Genome-Wide Association Studies
Replication helps ensure that a genotype-phenotype association observed in a
genome-wide association (GWA) study represents a credible association and is
not a chance finding or an artifact due to uncontrolled biases. We discuss
prerequisites for exact replication, issues of heterogeneity, advantages and
disadvantages of different methods of data synthesis across multiple studies,
frequentist vs. Bayesian inferences for replication, and challenges that arise
from multi-team collaborations. While consistent replication can greatly
improve the credibility of a genotype-phenotype association, it may not
eliminate spurious associations due to biases shared by many studies.
Conversely, lack of replication in well-powered follow-up studies usually
invalidates the initially proposed association, although occasionally it may
point to differences in linkage disequilibrium or effect modifiers across
studies.Comment: Published in at http://dx.doi.org/10.1214/09-STS290 the Statistical
Science (http://www.imstat.org/sts/) by the Institute of Mathematical
Statistics (http://www.imstat.org
- …
