1,306 research outputs found
Strong enhancement of extremely energetic proton production in central heavy ion collisions at intermediate energy
The energetic proton emission has been investigated as a function of the
reaction centrality for the system 58Ni + 58Ni at 30A MeV. Extremely energetic
protons (EpNN > 130 MeV) were measured and their multiplicity is found to
increase almost quadratically with the number of participant nucleons thus
indicating the onset of a mechanism beyond one and two-body dynamics.Comment: 5 pages, 2 figures, submitted to Physical Review Letter
The KM3NeT Project
The KM3NeT research infrastructure in the deep Mediterranean
Sea will host a multi-cubic-kilometre neutrino telescope and provide connectivity for continuous, long-term earth and sea science measurements. The KM3NeT neutrino telescope will complement the IceCube telescope at the South Pole in its field of view and surpass it substantially in sensitivity. In this paper the status of the KM3NeT
activities is presented
Signal recognition and background suppression by matched filters and neural networks for Tunka-Rex
The Tunka Radio Extension (Tunka-Rex) is a digital antenna array, which
measures the radio emission of the cosmic-ray air-showers in the frequency band
of 30-80 MHz. Tunka-Rex is co-located with TAIGA experiment in Siberia and
consists of 63 antennas, 57 of them are in a densely instrumented area of about
1 km\textsuperscript{2}. In the present work we discuss the improvements of the
signal reconstruction applied for the Tunka-Rex. At the first stage we
implemented matched filtering using averaged signals as template. The
simulation study has shown that matched filtering allows one to decrease the
threshold of signal detection and increase its purity. However, the maximum
performance of matched filtering is achievable only in case of white noise,
while in reality the noise is not fully random due to different reasons. To
recognize hidden features of the noise and treat them, we decided to use
convolutional neural network with autoencoder architecture. Taking the recorded
trace as an input, the autoencoder returns denoised trace, i.e. removes all
signal-unrelated amplitudes. We present the comparison between standard method
of signal reconstruction, matched filtering and autoencoder, and discuss the
prospects of application of neural networks for lowering the threshold of
digital antenna arrays for cosmic-ray detection.Comment: ARENA2018 proceeding
Contemporary presence of dynamical and statistical production of intermediate mass fragments in midperipheral Ni+Ni collisions at 30 MeV/nucleon
The reaction at 30 MeV/nucleon has been experimentally
investigated at the Superconducting Cyclotron of the INFN Laboratori Nazionali
del Sud. In midperipheral collisions the production of massive fragments
(4Z12), consistent with the statistical fragmentation of the
projectile-like residue and the dynamical formation of a neck, joining
projectile-like and target-like residues, has been observed. The fragments
coming from these different processes differ both in charge distribution and
isotopic composition. In particular it is shown that these mechanisms leading
to fragment production act contemporarily inside the same event.Comment: 9 pages, minor correction
Size and asymmetry of the reaction entrance channel: influence on the probability of neck production
The results of experiments performed to investigate the Ni+Al, Ni+Ni, Ni+Ag
reactions at 30 MeV/nucleon are presented. From the study of dissipative
midperipheral collisions, it has been possible to detect events in which
Intermediate Mass Fragments (IMF) production takes place. The decay of a
quasi-projectile has been identified; its excitation energy leads to a
multifragmentation totally described in terms of a statistical disassembly of a
thermalized system (T4 MeV, E4 MeV/nucleon). Moreover, for
the systems Ni+Ni, Ni+Ag, in the same nuclear reaction, a source with velocity
intermediate between that of the quasi-projectile and that of the quasi-target,
emitting IMF, is observed. The fragments produced by this source are more
neutron rich than the average matter of the overall system, and have a charge
distribution different, with respect to those statistically emitted from the
quasi-projectile. The above features can be considered as a signature of the
dynamical origin of the midvelocity emission. The results of this analysis show
that IMF can be produced via different mechanisms simultaneously present within
the same collision. Moreover, once fixed the characteristics of the
quasi-projectile in the three considered reactions (in size, excitation energy
and temperature), one observes that the probability of a partner IMF production
via dynamical mechanism has a threshold (not present in the Ni+Al case) and
increases with the size of the target nucleus.Comment: 16 pages, 7 figures, accepted for publication on Nuclear Physics
Ghost cells in compound odontoma: a study of undemineralized material
Calcifications and ghost cells at the enamel surface or in the ameloblastic epithelium were studied in twelve odontomas using undemineralized material.Calcified material formed focally in the intercellular portion of the enamel epithelium: this material showed a concentric layers arrangement.Ghost cells were present in most of the odontomas.These ghost cells were epithelial cells which enlarged, became eosiniphilic and underwent an aberrant type of keratinization with the formation of large masses of keratin, that didn’t stain as deeply as normal keratin. These cells often showed karyolysis of the nucleus as keratinization progressed. Frequent was the appearance of dystrophic calcifications in individual cells or clusters of cells, characterized by extremely fine basophilic granularity. The outlines of these keratinized cells could often still be discerned, even if with some difficulty.Les calcifications et les cellules fantômes à la surface de l’émail ou dans l’épithélium améloblastique ont été étudiées dans 12 odontomes en utilisant du matériel non décaldfié.Le matériel calcifié est formé focalement dans les portions intercellulaires de l'épithélium de l'émail: ce matériel montre un agencement en couches concentriques.Les cellules fantômes sont présentes dans la plupart des odontomes. Ces cellules fantômes sont des cellules épithéliales qui augmentent de taille, deviennent éosinophiles et subissent un type aberrant de kératinisation avec formation de larges masses de kératine qui ne se colorent pas aussi intensément que la kératine normale. Ces cellules montrent souvent une karyolyse du noyau au fur et à mesure de la progression de la kératinisation. Il était fréquent de rencontrer l’apparition de calcifications dystrophiques dans des cellules isolées ou en îlots, caractérisées par des granulations basophiles extrêmement fines. Les contours de ces cellules kératinisées peuvent être encore souvent discernés, quoique avec certaines difficultés
Prompt dipole radiation in fusion reactions
The prompt gamma ray emission was investigated in the 16A MeV energy region
by means of the 36,40Ar+96,92Zr fusion reactions leading to a compound nucleus
in the vicinity of 132Ce. We show that the prompt radiation, which appears to
be still effective at such a high beam energy, has an angular distribution
pattern consistent with a dipole oscillation along the symmetry axis of the
dinuclear system. The data are compared with calculations based on a collective
bremsstrahlung analysis of the reaction dynamics
Measuring diffuse neutrino fluxes with IceCube
In this paper the sensitivity of a future kilometer-sized neutrino detector
to detect and measure the diffuse flux of high energy neutrinos is evaluated.
Event rates in established detection channels, such as muon events from charged
current muon neutrino interactions or cascade events from electron neutrino and
tau neutrino interactions, are calculated using a detailed Monte Carlo
simulation. Neutrino fluxes as expected from prompt charm decay in the
atmosphere or from astrophysical sources such as Active Galactic Nuclei are
modeled assuming power laws. The ability to measure the normalization and slope
of these spectra is then analyzed.
It is found that the cascade channel generally has a high sensitivity for the
detection and characterization of the diffuse flux, when compared to what is
expected for the upgoing- and downgoing-muon channels. A flux at the level of
the Waxman-Bahcall upper bound should be detectable in all channels separately
while a combination of the information of the different channels will allow
detection of a flux more than one order of magnitude lower. Neutrinos from the
prompt decay of charmed mesons in the atmosphere should be detectable in future
measurements for all but the lowest predictions.Comment: 12 pages, 3 figure
The Antares Collaboration : Contributions to the 34th International Cosmic Ray Conference (ICRC 2015, The Hague)
The ANTARES detector, completed in 2008, is the largest neutrino telescope in the Northern hemisphere. Located at a depth of 2.5 km in the Mediterranean Sea, 40 km off the Toulon shore, its main goal is the search for astrophysical high energy neutrinos. In this paper we collect the 21 contributions of the ANTARES collaboration to the 34th International Cosmic Ray Conference (ICRC 2015). The scientific output is very rich and the contributions included in these proceedings cover the main physics results, ranging from steady point sources, diffuse searches, multi-messenger analyses to exotic physics
- …
