414 research outputs found
Discovery of a 270 Hz X-Ray Burst Oscillation in the X-Ray Dipper 4U 1916-053
We report the discovery of a highly coherent oscillation in a type-I X-ray
burst observed from 4U 1916-053 by the Rossi X-ray Timing Explorer (RXTE). The
oscillation was most strongly detected approx. 1 s after the burst onset at a
frequency of 269.3 Hz, and it increased in frequency over the following 4
seconds of the burst decay to a maximum of around 272 Hz. The total measured
drift of 3.58 +/- 0.41 Hz (1 sigma) represents the largest fractional change in
frequency (1.32 +/- 0.15 %) yet observed in any burst oscillation. If the
asymptotic frequency of the oscillation is interpreted in terms of a decoupled
surface burning layer, the implied neutron star spin period is around 3.7 ms.
However, the expansion of the burning layer required to explain frequency drift
during the burst is around 80 m, substantially larger than expected
theoretically (assuming rigid rotation). The oscillation was not present in the
persistent emission before the burst, nor in the initial rise. When detected
its amplitude was 6-12% (RMS) with a roughly sinusoidal profile. The burst
containing the oscillation showed no evidence for photospheric radius
expansion, while at least 5 of the other 9 bursts observed from the source by
RXTE during 1996 and 1998 did. No comparable oscillations were detected in the
other bursts. A pair of kilohertz quasi-periodic oscillations (QPOs) has been
previously reported from this source with a mean separation of 348 +/- 12 Hz.
4U 1916-053 is the first example of a source where the burst oscillation
frequency is significantly smaller than the frequency separation of the kHz
QPOs.Comment: 8 pages, 2 figures, 2 tables; accepted for ApJ Letter
Ultra-Stretchable Interconnects for High-Density Stretchable Electronics
The exciting field of stretchable electronics (SE) promises numerous novel
applications, particularly in-body and medical diagnostics devices. However,
future advanced SE miniature devices will require high-density, extremely
stretchable interconnects with micron-scale footprints, which calls for proven
standardized (complementary metal-oxide semiconductor (CMOS)-type) process
recipes using bulk integrated circuit (IC) microfabrication tools and
fine-pitch photolithography patterning. Here, we address this combined
challenge of microfabrication with extreme stretchability for high-density SE
devices by introducing CMOS-enabled, free-standing, miniaturized interconnect
structures that fully exploit their 3D kinematic freedom through an interplay
of buckling, torsion, and bending to maximize stretchability. Integration with
standard CMOS-type batch processing is assured by utilizing the Flex-to-Rigid
(F2R) post-processing technology to make the back-end-of-line interconnect
structures free-standing, thus enabling the routine microfabrication of
highly-stretchable interconnects. The performance and reproducibility of these
free-standing structures is promising: an elastic stretch beyond 2000% and
ultimate (plastic) stretch beyond 3000%, with 10
million cycles at 1000% stretch with <1% resistance change. This generic
technology provides a new route to exciting highly-stretchable miniature
devices.Comment: 13 pages, 5 figure, journal publicatio
Insights into Li and Li isotope cycling and sub-arc metasomatism from veined mantle xenoliths, Kamchatka
Harzburgitic xenoliths cut by pyroxenite veins from Avachinsky volcano, Kamchatka, are derived from the sub-arc mantle and record element transfer from the slab to the arc. Olivine and orthopyroxene in the harzburgites have Li isotopic compositions (δ7Li = +2.8 to +5.6) comparable to estimates of the upper mantle (δ7Li ~ +4 ± 2). The pyroxenite veins, which represent modal metasomatism and may therefore provide information about the metasomatic agent, have mantle-normalized trace element characteristics that suggest overprinting of their mantle source by an aqueous, slab-derived fluid. These include relative enrichments of Pb over Ce, U over Th and Sr over Nd. Li is enriched relative to the HREE, and ortho- and clinopyroxene from the veins are in Li elemental and isotopic equilibrium with each other and the surrounding harzburgite. Vein samples (δ7Li = +3.0 to +5.0) do not record a significant slab-derived δ7Li signature. These observations can be reconciled if slab Li diffusively re-equilibrates in the mantle wedge. Modeling demonstrates that Li equilibration of small (1–2 cm width) veins or melt conduits is achieved at mantle wedge temperatures within 101–105 years. We conclude that strongly fractionated Li isotopic signatures cannot be sustained for long periods in the sub-arc mantle, at least at shallow (<70 km) depths
An abrupt extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification
The controversial Capitanian (Middle Permian, 262 Ma) extinction event is only known from equatorial latitudes, and consequently its global extent is poorly resolved. We demonstrate that there were two, severe extinctions amongst brachiopods in northern Boreal latitudes (Spitsbergen) in the Middle to Late Permian, separated by a recovery phase. New age dating of the Spitsbergen strata (belonging to the Kapp Starostin Formation), using strontium isotopes and d13C trends and comparison with better-dated sections in Greenland, suggests that the first crisis occurred in the Capitanian. This age assignment indicates that this Middle Permian extinction is manifested at higher latitudes. Redox proxies (pyrite framboids and trace metals) show that the Boreal crisis coincided with an intensification of oxygen depletion, implicating anoxia in the extinction scenario. The widespread and near-total loss of carbonates across the Boreal Realm also suggests a role for acidification in the crisis. The recovery interval saw the appearance of new brachiopod and bivalve taxa alongside survivors, and an increased mollusk dominance, resulting in an assemblage reminiscent of younger Mesozoic assemblages. The subsequent end-Permian mass extinction terminated this Late Permian radiation
Coating thermal noise for arbitrary shaped beams
Advanced LIGO's sensitivity will be limited by coating noise. Though this
noise depends on beam shape, and though nongaussian beams are being seriously
considered for advanced LIGO, no published analysis exists to compare the
quantitative thermal noise improvement alternate beams offer. In this paper, we
derive and discuss a simple integral which completely characterizes the
dependence of coating thermal noise on shape. The derivation used applies
equally well, with minor modifications, to all other forms of thermal noise in
the low-frequency limit.Comment: 3 pages. Originally performed in August 2004. Submitted to CQG. (v2)
: Corrections from referee and other
Search for Gravitational Wave Bursts from Soft Gamma Repeaters
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with Soft Gamma Repeater (SGR) bursts. This is the first
search sensitive to neutron star f-modes, usually considered the most efficient
GW emitting modes. We find no evidence of GWs associated with any SGR burst in
a sample consisting of the 27 Dec. 2004 giant flare from SGR 1806-20 and 190
lesser events from SGR 1806-20 and SGR 1900+14 which occurred during the first
year of LIGO's fifth science run. GW strain upper limits and model-dependent GW
emission energy upper limits are estimated for individual bursts using a
variety of simulated waveforms. The unprecedented sensitivity of the detectors
allows us to set the most stringent limits on transient GW amplitudes published
to date. We find upper limit estimates on the model-dependent isotropic GW
emission energies (at a nominal distance of 10 kpc) between 3x10^45 and 9x10^52
erg depending on waveform type, detector antenna factors and noise
characteristics at the time of the burst. These upper limits are within the
theoretically predicted range of some SGR models.Comment: 6 pages, 1 Postscript figur
- …
