571 research outputs found
Are sleep problems a risk factor for the onset of musculoskeletal pain in children and adolescents? A systematic review
Study Objectives:
Musculoskeletal pain is a major burden on the society. Adults with sleep problems are at higher risk of musculoskeletal pain onset, but there is no evidence for this relationship in children and adolescents. This study aimed to systematically review prospective studies on the risk of musculoskeletal pain onset in children and adolescents with sleep problems.
Methods:
Five databases (MEDLINE, PsycINFO, AMED, EMBASE, and HMIC) were systematically searched to identify prospective studies that investigated if children and adolescents (aged 6–19 years) with sleep problems are at higher risk of musculoskeletal pain onset. Included studies were assessed for study quality and a best evidence synthesis was carried out on extracted data.
Results:
Thirteen prospective studies were identified. Overall, evidence indicates that sleep problems (quality, quantity, and day time tiredness) are not risk factors for musculoskeletal pain onset. Further analysis on specific body regions shows strong evidence that sleep problems are a risk factor for neck pain onset (only in girls) and that sleep problems are not a risk factor for the onset of widespread pain.
Conclusions:
Overall, sleep problems are not a risk factor for musculoskeletal pain onset in children and adolescents. Increased risk was found for some specific body regions and subgroups, but the evidence base was less strong and generally inconsistent. This review found a lack of quality in research methodology compared to research in adults, and further research with improved methodology is required
Compact and explicit physical model for lateral metal-oxide-semiconductor field-effect transistor with nanoelectromechanical system based resonant gate
We propose a simple analytical model of a metal-oxide-semiconductor
field-effect transistor with a lateral resonant gate based on the coupled
electromechanical equations, which are self-consistently solved in time. All
charge densities according to the mechanical oscillations are evaluated. The
only input parameters are the physical characteristics of the device. No extra
mathematical parameters are used to fit the experimental results. Theoretical
results are in good agreement with the experimental data in static and dynamic
operation. Our model is comprehensive and may be suitable for any
electromechanical device based on the field-effect transduction
Large-Scale Integration of Nanoelectromechanical Systems for Gas Sensing Applications
We have developed arrays of nanomechanical systems (NEMS) by large-scale integration, comprising thousands of individual nanoresonators with densities of up to 6 million NEMS per square centimeter. The individual NEMS devices are electrically coupled using a combined series-parallel configuration that is extremely robust with respect to lithographical defects and mechanical or electrostatic-discharge damage. Given the large number of connected nanoresonators, the arrays are able to handle extremely high input powers (>1 W per array, corresponding to <1 mW per nanoresonator) without excessive heating or deterioration of resonance response. We demonstrate the utility of integrated NEMS arrays as high-performance chemical vapor sensors, detecting a part-per-billion concentration of a chemical warfare simulant within only a 2 s exposure period
Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films
We demonstrate piezoelectrically actuated, electrically tunable nanomechanical resonators based on multilayers containing a 100-nm-thin aluminum nitride (AlN) layer. Efficient piezoelectric actuation of very high frequency fundamental flexural modes up to ~80 MHz is demonstrated at room temperature. Thermomechanical fluctuations of AlN cantilevers measured by optical interferometry enable calibration of the transduction responsivity and displacement sensitivities of the resonators. Measurements and analyses show that the 100 nm AlN layer employed has an excellent piezoelectric coefficient, d_(31)=2.4 pm/V. Doubly clamped AlN beams exhibit significant frequency tuning behavior with applied dc voltage
Eternal solutions to a singular diffusion equation with critical gradient absorption
The existence of nonnegative radially symmetric eternal solutions of exponential self-similar type is investigated for the singular diffusion equation with critical gradient absorption \begin{equation*} \partial_{t} u-\Delta_{p} u+|\nabla u|^{p/2}=0 \quad \;\;\hbox{in}\;\; (0,\infty)\times\real^N \end{equation*} where . Such solutions are shown to exist only if the parameter ranges in a bounded interval which is in sharp contrast with well-known singular diffusion equations such as when or the porous medium equation when . Moreover, the profile decays to zero as in a faster way for than for but the algebraic leading order is the same in both cases. In fact, for large , decays as while behaves as when
Sympathovagal balance and 1-h postload plasma glucose in normoglucose tolerant hypertensive patients.
AIMS:
Normoglucose tolerant (NGT) subjects with a 1-h postload plasma glucose (PLPG) value ≥155 mg/dL have an increased risk of type-2 diabetes and subclinical organ damage. Heart rate variability (HRV) reflects cardiac autonomic balance, frequently impaired in course of diabetes. At this time, no data support the association between 1-h PLPG and HRV; thus, we investigated the possible association between 1-h PLPG and HRV.
METHODS:
We enrolled 92 never-treated hypertensive subjects (56 women, 36 men), aged 55 ± 9.8 years. During OGTT, the patients underwent electrocardiographic recordings to evaluate HRV in the time domain (SDNN). Insulin sensitivity was assessed by Matsuda index.
RESULTS:
Among participants, 56 were NGT, 20 had impaired glucose tolerance (IGT), and 16 had type-2 diabetes. According to the 1-h PLPG cutoff point of 155 mg/dL, we divided NGT subjects into: NGT < 155 (n = 38) and NGT ≥ 155 (n = 18). Glucose tolerance status was associated with a significant (P < 0.0001) increase in PLPG and insulin and the reduction in Matsuda index. In all groups, the SDNN values significantly (P < 0.0001) decreased during the first hour of OGTT. A complete recovery in NGT groups was observed at the end of the second hour; in IGT and type-2 diabetes, SDNN remained significantly lower with respect to baseline values. At multiple regression analysis, Matsuda index resulted in the only determinant of SDNN modification, explaining the 12.3 % of its variability.
CONCLUSIONS:
Our data demonstrate that during OGTT, sympathovagal balance is acutely affected by both glucose and insulin modifications. Particularly, NGT ≥ 155 subjects behave in the same way of IGT and type-2 diabetes patients
Large time behavior for a quasilinear diffusion equation with critical gradient absorption
International audienceWe study the large time behavior of non-negative solutions to thenonlinear diffusion equation with critical gradient absorption\partial_t u-\Delta_{p}u+|\nabla u|^{q_*}=0 \quad \hbox{in} \(0,\infty)\times\mathbb{R}^N\ ,for and . We show that theasymptotic profile of compactly supported solutions is given by asource-type self-similar solution of the -Laplacian equation with suitable logarithmic time and space scales. In the process, we also get optimal decay rates for compactly supported solutions and optimal expansion rates for their supports that strongly improve previous results
Self-oscillation conditions of a resonant-nano-electromechanical mass sensor
International audienceThis article presents a comprehensive study and design methodology of co-integrated oscillators for nano mass sensing application based on resonant Nano-Electro-Mechanical-System (NEMS). In particular, it reports the capacitive with the piezoresistive transduction schemes in terms of the overall sensor performance. The developed model is clearly in accordance with the general experimental observations obtained for NEMS-based mass detection. The piezoresistive devices are much sensitive (up to 10 zg/√Hz) than capacitive ones (close to 100 zg/√Hz) since they can work at higher frequency. Moreover, the high doped silicon piezoresistive gauge, which is of a great interest for very large scale integration displays similar theoretical resolution than the metallic gauge already used experimentally
Pedestrians moving in dark: Balancing measures and playing games on lattices
We present two conceptually new modeling approaches aimed at describing the
motion of pedestrians in obscured corridors:
* a Becker-D\"{o}ring-type dynamics
* a probabilistic cellular automaton model.
In both models the group formation is affected by a threshold. The
pedestrians are supposed to have very limited knowledge about their current
position and their neighborhood; they can form groups up to a certain size and
they can leave them. Their main goal is to find the exit of the corridor.
Although being of mathematically different character, the discussion of both
models shows that it seems to be a disadvantage for the individual to adhere to
larger groups. We illustrate this effect numerically by solving both model
systems. Finally we list some of our main open questions and conjectures
- …
