360 research outputs found
Steady-state visual evoked potentials and phase synchronization in migraine
We investigate phase synchronization in EEG recordings from migraine
patients. We use the analytic signal technique, based on the Hilbert transform,
and find that migraine brains are characterized by enhanced alpha band phase
synchronization in presence of visual stimuli. Our findings show that migraine
patients have an overactive regulatory mechanism that renders them more
sensitive to external stimuli.Comment: 4 page
Distortions of Subjective Time Perception Within and Across Senses
Background: The ability to estimate the passage of time is of fundamental importance for perceptual and cognitive processes. One experience of time is the perception of duration, which is not isomorphic to physical duration and can be distorted by a number of factors. Yet, the critical features generating these perceptual shifts in subjective duration are not understood.
Methodology/Findings: We used prospective duration judgments within and across sensory modalities to examine the effect of stimulus predictability and feature change on the perception of duration. First, we found robust distortions of perceived duration in auditory, visual and auditory-visual presentations despite the predictability of the feature changes in the stimuli. For example, a looming disc embedded in a series of steady discs led to time dilation, whereas a steady disc embedded in a series of looming discs led to time compression. Second, we addressed whether visual (auditory) inputs could alter the perception of duration of auditory (visual) inputs. When participants were presented with incongruent audio-visual stimuli, the perceived duration of auditory events could be shortened or lengthened by the presence of conflicting visual information; however, the perceived duration of visual events was seldom distorted by the presence of auditory information and was never perceived shorter than their actual durations.
Conclusions/Significance: These results support the existence of multisensory interactions in the perception of duration and, importantly, suggest that vision can modify auditory temporal perception in a pure timing task. Insofar as distortions in subjective duration can neither be accounted for by the unpredictability of an auditory, visual or auditory-visual event, we propose that it is the intrinsic features of the stimulus that critically affect subjective time distortions
The prognostic role of post-induction FDG-PET in patients with follicular lymphoma: a subset analysis from the FOLL05 trial of the Fondazione Italiana Linfomi (FIL)
BACKGROUND: [18F]fluorodeoxyglucose-positron emission tomography (PET) is emerging as a strong diagnostic and prognostic tool in follicular lymphoma (FL) patients.
PATIENTS AND METHODS: In a subset analysis of the FOLL05 trial (NCT00774826), we investigated the prognostic role of post-induction PET (PI-PET) scan. Patients were eligible to this study if they had a PI-PET scan carried out within 3 months from the end of induction immunochemotherapy. Progression-free survival (PFS) was the primary study end point.
RESULTS: A total of 202 patients were eligible and analysed for this study. The median age was 55 years (range 33-75). Overall, PI-PET was defined as positive in 49 (24%) patients. Conventional response assessment with CT scan was substantially modified by PET: 15% (22/145) of patients considered as having a complete response (CR) after CT were considered as having partial response (PR) after PI-PET and 53% (30/57) patients considered as having a PR after CT were considered as a CR after PI-PET. With a median follow-up of 34 months, the 3-year PFS was 66% and 35%, respectively, for patients with negative and positive PI-PET (P<0.001). At multivariate analysis, PI-PET (hazard ratio 2.57, 95% confidence interval 1.52-4.34, P<0.001) was independent of conventional response, FLIPI and treatment arm. Also, the prognostic role of PI-PET was maintained within each FLIPI risk group.
CONCLUSIONS: In FL patients, PI-PET substantially modifies response assessment and is strongly predictive for the risk of progression. PET should be considered in further updates of response criteria
Characterisation of Alpine highland pastures located at different altitudes: forages evaluation, chemical composition, in vitro digestibility, fatty acid and terpene contents
Influence of Alpine highland pasture on the fatty acid and terpene composition of milk and Plaisentif cheese from various Piedmont farms
Dose- and substrate-dependent reduction of enteric methane and ammonia by natural additives in vitro
Ruminants contribute to global warming by emitting greenhouse gasses, particularly methane (CH4) which is a product of rumen fermentation. The use of feed additives able to modulate rumen fermentation is a promising strategy to reduce enteric CH4 and ammonia (NH3) emissions. Among the various strategies investigated, plant secondary metabolites (PSMs) have attracted attention due to their apparent potential to reduce enteric CH4 and NH3 emissions, and it would be possible to use such compounds as feed additives in organic production systems. In an in vitro system simulating rumen fermentation, we have tested the impact of different classes of naturally occurring PSMs; catechin and quercetin (flavonoids), salicylic acid (phenolic acid) and tannic acid (hydrolysable tannin). The PSMs were added to two different basal feeds (maize and grass silages) at three inclusion doses 1.5, 3 and 6% of the feed dry matter (DM). CH4 production was significantly lowered upon addition of quercetin to two basal feeds at doses of 3 and 6%, and this without changes in concentrations of total volatile fatty acid (VFA) produced during fermentation. Quercetin, as the only tested additive, reduced CH4 production, and when added to maize silage and grass silage, the reduction increased linearly with increasing dose, ie., by 51 and 43%, respectively, at a dose of 3% of feed DM and by 86 and 58%, respectively, at a dose of 6% of feed DM. Moreover, quercetin significantly reduced NH3 concentration by >12% at doses of 3 and 6% in feed DM irrespective of the basal feed used as compared to when the basal feeds were incubated alone. Although none of the other additives affected CH4 formation, several additives had significant impacts on concentrations of NH3 and VFAs in the incubated fluid after fermentation. This study demonstrated a dose-dependent ability of quercetin to reduce CH4 emission from rumen fermentation, however, the magnitude of the suppression of CH4 depended on the basal feed. Furthermore, quercetin reduced NH3 concentration irrespective of the basal feed type. These findings encourage to in vivo studies to verify whether quercetin can reduce CH4 emission also in cows
- …
