90 research outputs found

    Detection of liquid xenon scintillation light with a Silicon Photomultiplier

    Full text link
    We have studied the feasibility of a silicon photomultiplier (SiPM) to detect liquid xenon (LXe) scintillation light. The SiPM was operated inside a small volume of pure LXe, at -95 degree Celsius, irradiated with an internal Am-241 alpha source. The gain of the SiPM at this temperature was estimated to be 1.8 x 10^6 with bias voltage at 52 V. Based on the geometry of the setup, the quantum efficiency of the SiPM was estimated to be 22% at the Xe wavelength of 178 nm. The low excess noise factor, high single photoelectron detection efficiency, and low bias voltage of SiPMs make them attractive alternative UV photon detection devices to photomultiplier tubes (PMTs) for liquid xenon detectors, especially for experiments requiring a very low energy detection threshold, such as neutralino dark matter searches

    Study of Scintillator Strip with Wavelength Shifting Fiber and Silicon Photomultiplier

    Full text link
    The performance of the 200×2.5×1200\times2.5\times1 cm3^3 plastic scintillator strip with wavelength shifting fiber read-out by two novel photodetectors called Silicon PhotoMultipliers (SiPMs) is discussed. The advantages of SiPM relative to the traditional multichannel photomultiplier are shown. Light yield and light attenuation measurements are presented. This technique can be used in muon or calorimeter systems.Comment: 9 pages, 5 figure

    Characterisation of radiation damage in silicon photomultipliers with a Monte Carlo model

    Full text link
    Measured response functions and low photon yield spectra of silicon photomultipliers (SiPM) were compared to multi-photoelectron pulse-height distributions generated by a Monte Carlo model. Characteristic parameters for SiPM were derived. The devices were irradiated with 14 MeV electrons at the Mainz microtron MAMI. It is shown that the first noticeable damage consists of an increase in the rate of dark pulses and the loss of uniformity in the pixel gains. Higher radiation doses reduced also the photon detection efficiency. The results are especially relevant for applications of SiPM in fibre detectors at high luminosity experiments.Comment: submitted to Nucl. Instr. and Meth.

    On the limited amplitude resolution of multipixel Geiger-mode APDs

    Full text link
    The limited number of active pixels in a Geiger-mode Avalanche Photodiode (G-APD) results not only in a non-linearity but also in an additional fluctuation of its response. Both these effects are taken into account to calculate the amplitude resolution of an ideal G-APD, which is shown to be finite. As one of the consequences, the energy resolution of a scintillation detector based on a G-APD is shown to be limited to some minimum value defined by the number of pixels in the G-APD.Comment: 5 pages, 3 figure

    Study of timing performance of Silicon Photomultiplier and application for a Cherenkov detector

    Full text link
    Silicon photomultipliers are very versatile photo detectors due to their high photon detection efficiency, fast response, single photon counting capability, high amplification, and their insensitivity to magnetic fields. At our institute we are studying the performance of these photo detectors at various operating conditions. On the basis of the experience in the laboratory we built a prototype of a timing Cherenkov detector consisting of a quartz radiator with two 3×33\times 3 mm2^2 MPPCs S10362-33-100C from Hamamatsu Photonics as photodetectors. The MPPC sensors were operated with Peltier cooling to minimize thermal noise and to avoid gain drifts. The test measurements at the DAΦ\PhiNE Beam-Test Facility (BTF) at the Laboratori Nazionali di Frascati (LNF) with pulsed 490 MeV electrons and the results on timing performance with Cherenkov photons are presented.Comment: Conference proceedings of 12th Vienna Conference on Instrumentation 201

    The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers

    Get PDF
    The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9.4 patch 03) simulations with different hadronic physics models. These comparisons demonstrate the importance of using high precision treatment of low-energy neutrons for tungsten absorbers, while an overall good agreement between data and simulations for all considered models is observed for steel.Comment: 24 pages including author list, 9 figures, published in JINS

    Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter

    Full text link
    Showers produced by positive hadrons in the highly granular CALICE scintillator-steel analogue hadron calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The calorimeter response and resolution and spatial characteristics of shower development for proton- and pion-induced showers for test beam data and simulations using Geant4 version 9.6 are compared.Comment: 26 pages, 16 figures, JINST style, changes in the author list, typos corrected, new section added, figures regrouped. Accepted for publication in JINS

    Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter

    Full text link
    We present a study of showers initiated by electrons, pions, kaons, and protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE scintillator-tungsten analogue hadronic calorimeter. The data were recorded at the CERN Super Proton Synchrotron in 2011. The analysis includes measurements of the calorimeter response to each particle type as well as measurements of the energy resolution and studies of the longitudinal and radial shower development for selected particles. The results are compared to Geant4 simulations (version 9.6.p02). In the study of the energy resolution we include previously published data with beam momenta from 1 GeV to 10 GeV recorded at the CERN Proton Synchrotron in 2010.Comment: 35 pages, 21 figures, 8 table
    corecore