327 research outputs found
Liquisolid Compacts: A Review
Solubility is a major problem for nearly one third drugs in their development phase. Liquisolid technique is a most promising technique for promoting dissolution by increase in solubility. Liquisolid compact technology is a novel concept for oral drug delivery. Liquisolid compact technology was first described by spireas et.al. (1998). According to the new formulation method of liqui-solid compacts, liquid medications such as solutions or suspensions of water insoluble drugs in suitable nonvolatile liquid vehicles can be converted into acceptably flowing and compressible powders by blending with selected powder excipients
Modulation of rat peripheral polymorphonuclear leukocyte response by nitric oxide and arginine
The effect of nitric oxide (NO) on the luminol-dependent chemiluminescence (LCL) response of rat polymorphonuclear leukocytes (PMNLs) was analyzed by using sodium nitroprusside (SNP), a NO donor, and L-arginine (L-arg), a NO precursor. A significant reduction in the LCL intensity was observed in presence of SNP (100 μmol/L) or L-arg (5 or 10 mmol/L) in arachidonic acid (AA) phorbol ester (PMA) and formyl- methionyl-leucyl-phenylalanine stimulated PMNLs. However, opsonized zymosan-induced LCL was not attenuated significantly. Reduction in hydroxyl radical and superoxide generation was also observed in SNP- or L-arg-pretreated cells. D-Arg (10 mmol/L) pretreatment did not inhibit PMNLs' LCL response. Furthermore, methylene blue (5 μmol/L) and L-NG- mono methyl-L-arginine (100 or 300 μmol/L) significantly attenuated the LCL response, as induced by various agonists. Cyclic GMP did not alter the reactive oxygen species generation from rat PMNLs. In addition, AA-induced release of myeloperoxidase, a marker of azurophilic granules, was found to be enhanced in L-arg- (10 mmol/L) pretreated PMNLs. The results suggest that NO inhibits free radical generation from rat PMNLs
Economic viability and geographic distribution of centralized biogas plants: Case study Croatia
Oral and pharyngeal cancer in South Asians and non-South Asians in relation to socioeconomic deprivation in South East England.
From UK Thames Cancer Registry data, after controlling for socioeconomic deprivation of area of residence, South Asian males showed a higher relative risk of oral (1.36; 95% CI: 1.11, 1.67), but not of pharyngeal cancer than non-South Asian males, whereas South Asian females had much higher risks of these cancers (3.67; 95% CI: 2.97, 4.53 and 2.06; 95% CI: 1.44, 2.93), respectively, than non-South Asians
Modeling the microbial growth of two Escherichia coli strains in a multi-substrate environment
Wireless phone use in childhood and adolescence and neuroepithelial brain tumours: Results from the international MOBI-Kids study
In recent decades, the possibility that use of mobile communicating devices, particularly wireless (mobile and cordless) phones, may increase brain tumour risk, has been a concern, particularly given the considerable increase in their use by young people. MOBI-Kids, a 14-country (Australia, Austria, Canada, France, Germany, Greece, India, Israel, Italy, Japan, Korea, the Netherlands, New Zealand, Spain) case-control study, was conducted to evaluate whether wireless phone use (and particularly resulting exposure to radiofrequency (RF) and extremely low frequency (ELF) electromagnetic fields (EMF)) increases risk of brain tumours in young people. Between 2010 and 2015, the study recruited 899 people with brain tumours aged 10 to 24 years old and 1,910 controls (operated for appendicitis) matched to the cases on date of diagnosis, study region and age. Participation rates were 72% for cases and 54% for controls. The mean ages of cases and controls were 16.5 and 16.6 years, respectively; 57% were males. The vast majority of study participants were wireless phones users, even in the youngest age group, and the study included substantial numbers of long-term (over 10 years) users: 22% overall, 51% in the 20-24-year-olds. Most tumours were of the neuroepithelial type (NBT; n = 671), mainly glioma. The odds ratios (OR) of NBT appeared to decrease with increasing time since start of use of wireless phones, cumulative number of calls and cumulative call time, particularly in the 15-19 years old age group. A decreasing trend in ORs was also observed with increasing estimated cumulative RF specific energy and ELF induced current density at the location of the tumour. Further analyses suggest that the large number of ORs below 1 in this study is unlikely to represent an unknown causal preventive effect of mobile phone exposure: they can be at least partially explained by differential recall by proxies and prodromal symptoms affecting phone use before diagnosis of the cases. We cannot rule out, however, residual confounding from sources we did not measure. Overall, our study provides no evidence of a causal association between wireless phone use and brain tumours in young people. However, the sources of bias summarised above prevent us from ruling out a small increased risk
Agro-morphological characterization of lentil germplasm of Indian National Genebank and Development of a core set for efficient utilization in lentil improvement programs
Lentil (Lens culinaris Medik.) is one of the major cool-season pulse crops worldwide. Its increasing demand as a staple pulse has led to the unlocking of diverse germplasm collections conserved in the genebanks to develop its superior varieties. The Indian National Genebank, housed at the Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India, currently has 2,324 accessions comprising 1,796 indigenous and 528 exotic collections. This study was conducted to unveil the potential of lentil germplasm by assessing its agro-morphological characteristics and diversity, identifying trait-specific germplasm, and developing a core set. The complete germplasm set was characterized for two years, i.e., 2017-2018 and 2018-2019, and data were recorded on 26 agro-morphological traits. High phenotypic variability was observed for nine quantitative and 17 qualitative traits. A core set comprising 170 accessions (137 Indian and 33 exotic) was derived based on the characterization data as well as geographical origin using a heuristic method and PowerCore software. This core set was found to be sufficiently diverse and representative of the entire collection based on the comparison made using Shannon-Weaver diversity indices and χ2 test. These results were further validated by summary statistics. The core set displayed high genetic diversity as evident from a higher coefficient of variance in comparison to the entire set for individual traits and overall Shannon-Weaver diversity indices (entire: 1.054; core: 1.361). In addition, the total variation explained by the first three principal components was higher in the core set (70.69%) than in the entire collection (68.03%). Further, the conservation of pairwise correlation values among descriptors in the entire and core set reflected the maintenance of the structure of the whole set. Based on the results, this core set is believed to represent the entire collection, completely. Therefore, it constitutes a potential set of germplasm that can be used in the genetic enhancement of lentils
Education, tobacco smoking, alcohol consumption, and IL-2 and IL-6 gene polymorphisms in the survival of head and neck cancer
The MOBI-Kids Study Protocol: Challenges in Assessing Childhood and Adolescent Exposure to Electromagnetic Fields from Wireless Telecommunication Technologies and Possible Association with Brain Tumor Risk
The Hsc/Hsp70 Co-Chaperone Network Controls Antigen Aggregation and Presentation during Maturation of Professional Antigen Presenting Cells
The maturation of mouse macrophages and dendritic cells involves the transient deposition of ubiquitylated proteins in the form of dendritic cell aggresome-like induced structures (DALIS). Transient DALIS formation was used here as a paradigm to study how mammalian cells influence the formation and disassembly of protein aggregates through alterations of their proteostasis machinery. Co-chaperones that modulate the interplay of Hsc70 and Hsp70 with the ubiquitin-proteasome system (UPS) and the autophagosome-lysosome pathway emerged as key regulators of this process. The chaperone-associated ubiquitin ligase CHIP and the ubiquitin-domain protein BAG-1 are essential for DALIS formation in mouse macrophages and bone-marrow derived dendritic cells (BMDCs). CHIP also cooperates with BAG-3 and the autophagic ubiquitin adaptor p62 in the clearance of DALIS through chaperone-assisted selective autophagy (CASA). On the other hand, the co-chaperone HspBP1 inhibits the activity of CHIP and thereby attenuates antigen sequestration. Through a modulation of DALIS formation CHIP, BAG-1 and HspBP1 alter MHC class I mediated antigen presentation in mouse BMDCs. Our data show that the Hsc/Hsp70 co-chaperone network controls transient protein aggregation during maturation of professional antigen presenting cells and in this way regulates the immune response. Similar mechanisms may modulate the formation of aggresomes and aggresome-like induced structures (ALIS) in other mammalian cell types
- …
