512 research outputs found
UVES observations of QSO 0000-2620: oxygen and zinc abundances in the Damped Ly-alpha galaxy at z_abs=3.3901
Observations of the QSO 0000-2620 with UVES spectrograph at the 8.2m ESO
KUEYEN telescope are used for abundance analysis of the damped Ly-alpha system
at z_{abs}=3.3901. Several Oxygen lines are identified in the Ly_alpha forest
and a measure for the oxygen abundance is obtained at [O/H]=-1.85 +/- 0.1 by
means of the unsaturated OI 925 A and OI 950 A lines. This represents the most
accurate O measurement in a damped Ly_alpha galaxy so far. We have also
detected ZnII 2026 A and CrII 2056, 2062 A redshifted at about 8900 A and found
abundances [Zn/H] = -2.07 +/- 0.1 and [Cr/H]=-1.99 +/- 0.1. Furthermore,
previous measurements of Fe, Si, Ni and N have been refined yielding
[Fe/H]=-2.04 +/- 0.1, [Si/H]=-1.90 +/- 0.1, [Ni/H]=-2.27 +/- 0.1, and
[N/H]=-2.68 +/- 0.1. The abundance of the non-refractory element zinc is the
lowest among the damped Ly-alpha systems showing that the associated
intervening galaxy is indeed in the early stages of its chemical evolution. The
fact that the Zn abundance is identical to that of the refractory elements Fe
and Cr suggests that dust grains have not formed yet. In this Damped Ly-alpha
system the observed [O,S,Si/Zn,Fe,Cr] ratios, in whatever combination are
taken, are close to solar (i.e 0.1-0.2 dex) and do not show the
[alpha-element/Fe] enhancement observed in Milky Way stars of comparable
metallicity. The observed behavior supports a galaxy evolution model
characterized by either episodic or low star formation rate rather than a
Milky-Way-type evolutionary model.Comment: Accepted by Ap
ESPRESSO: The next European exoplanet hunter
The acronym ESPRESSO stems for Echelle SPectrograph for Rocky Exoplanets and
Stable Spectroscopic Observations; this instrument will be the next VLT high
resolution spectrograph. The spectrograph will be installed at the
Combined-Coud\'e Laboratory of the VLT and linked to the four 8.2 m Unit
Telescopes (UT) through four optical Coud\'e trains. ESPRESSO will combine
efficiency and extreme spectroscopic precision. ESPRESSO is foreseen to achieve
a gain of two magnitudes with respect to its predecessor HARPS, and to improve
the instrumental radial-velocity precision to reach the 10 cm/s level. It can
be operated either with a single UT or with up to four UTs, enabling an
additional gain in the latter mode. The incoherent combination of four
telescopes and the extreme precision requirements called for many innovative
design solutions while ensuring the technical heritage of the successful HARPS
experience. ESPRESSO will allow to explore new frontiers in most domains of
astrophysics that require precision and sensitivity. The main scientific
drivers are the search and characterization of rocky exoplanets in the
habitable zone of quiet, nearby G to M-dwarfs and the analysis of the
variability of fundamental physical constants. The project passed the final
design review in May 2013 and entered the manufacturing phase. ESPRESSO will be
installed at the Paranal Observatory in 2016 and its operation is planned to
start by the end of the same year.Comment: 12 pages, figures included, accepted for publication in Astron. Nach
Optimising the future Belgian offshore wind farm monitoring programme
Six years of monitoring triggered a reflection on how to best continue with the monitoring programme. The basic monitoring has to be rationalised at the level of the likelihood of impact detection, the meaningfulness of impact size and representativeness of the findings. Targeted monitoring should continue to disentangle processes behind the observed impact, for instance the overarching artificial reef effect created by wind farms. The major challenge however remains to achieve a reliable assessment of the cumulative impacts. Continuing consultation and collaboration within the Belgian offshore wind farm monitoring team and with foreign marine scientists and managers will ensure an optimisation of the future monitoring programme
- …
