51 research outputs found
Population dynamics of cyanobacteria in alluvial rice grown soils of lower Brahmaputra floodplain
Abstract The present investigation was carried out to study the cyanobacterial diversity and population dynamics during different months in relation to soil physico-chemical parameters in various rice fields in alluvial flood plain of the Brahmaputra River. Altogether 71 species of cyanobacteria under 20 genera and 9 families were recorded. Among the species heterocystous filamentous were dominant (80%) over the other forms and Nostocaceae (54%) was predominant in all the three sites followed by Chroococcaceae (14%) and Rivulariaceae (13%) respectively. In case of population number it ranged in between 0.14±x10 4 /g to 9.35±9.68x10 4 /g of soil. It was recorded highest during July-August (monsoon season) followed by September-October (post monsoon), March-June (pre monsoon) and November-February (winter season) respectively. Principle component analysis (PCA) justified the seasonal pattern and identified close relation to soil parameters like temperature, moisture, pH, phosphorus and sodium. Pearson's correlation analysis also revealed significant negative correlation of cyanobacterial number with soil nitrogen, organic carbon and conductivity in the floodplain soils
High-soft to low-hard state transition in black hole X-ray binaries with GRMHD simulations
To understand the decaying phase of outbursts in the black hole (BH) X-ray
binaries (BH-XRBs), we performed very long general relativistic
magneto-hydrodynamic (GRMHD) simulations of a geometrically thin accretion disk
around a Kerr BH with slowly rotating matter injected from outside. We
thoroughly studied the flow properties, dynamical behavior of the accretion
rate, magnetic flux rate, and jet properties during the temporal evolution. Due
to the interaction between the thin disk and injected matter, the accretion
flow near the BH goes through different phases. The sequence of phases is: soft
state soft-intermediate state hard-intermediate
state hard state quiescent state. For the accretion
rate (and hence the luminosity) to decrease (as observed) in our model, the
mass injection should not decay slower than angular momentum injection. We also
observed quasi-periodic oscillations (QPOs) in the accretion flow. Throughout
the evolution, we observed low-frequency QPOs (~10Hz) and high-frequency QPOs
(\sim 200Hz). Our simple unified accretion flow model for state transitions is
able to describe outbursts in BH-XRBs.Comment: 13 pages, 11 figures, Accepted for publication on Ap
First Sagittarius A* Event Horizon Telescope Results. VIII. Physical Interpretation of the Polarized Ring
In a companion paper, we present the first spatially resolved polarized image of Sagittarius A* on event horizon scales, captured using the Event Horizon Telescope, a global very long baseline interferometric array operating at a wavelength of 1.3 mm. Here we interpret this image using both simple analytic models and numerical general relativistic magnetohydrodynamic (GRMHD) simulations. The large spatially resolved linear polarization fraction (24%–28%, peaking at ∼40%) is the most stringent constraint on parameter space, disfavoring models that are too Faraday depolarized. Similar to our studies of M87*, polarimetric constraints reinforce a preference for GRMHD models with dynamically important magnetic fields. Although the spiral morphology of the polarization pattern is known to constrain the spin and inclination angle, the time-variable rotation measure (RM) of Sgr A* (equivalent to ≈46° ± 12° rotation at 228 GHz) limits its present utility as a constraint. If we attribute the RM to internal Faraday rotation, then the motion of accreting material is inferred to be counterclockwise, contrary to inferences based on historical polarized flares, and no model satisfies all polarimetric and total intensity constraints. On the other hand, if we attribute the mean RM to an external Faraday screen, then the motion of accreting material is inferred to be clockwise, and one model passes all applied total intensity and polarimetric constraints: a model with strong magnetic fields, a spin parameter of 0.94, and an inclination of 150°. We discuss how future 345 GHz and dynamical imaging will mitigate our present uncertainties and provide additional constraints on the black hole and its accretion flow
The persistent shadow of the supermassive black hole of M87: II. Model comparisons and theoretical interpretations
The Event Horizon Telescope (EHT) observation of M87∗ in 2018 has revealed a ring with a diameter that is consistent with the 2017 observation. The brightest part of the ring is shifted to the southwest from the southeast. In this paper, we provide theoretical interpretations for the multi-epoch EHT observations for M87∗ by comparing a new general relativistic magnetohydrodynamics model image library with the EHT observations for M87∗ in both 2017 and 2018. The model images include aligned and tilted accretion with parameterized thermal and nonthermal synchrotron emission properties. The 2018 observation again shows that the spin vector of the M87∗ supermassive black hole is pointed away from Earth. A shift of the brightest part of the ring during the multi-epoch observations can naturally be explained by the turbulent nature of black hole accretion, which is supported by the fact that the more turbulent retrograde models can explain the multi-epoch observations better than the prograde models. The EHT data are inconsistent with the tilted models in our model image library. Assuming that the black hole spin axis and its large-scale jet direction are roughly aligned, we expect the brightest part of the ring to be most commonly observed 90 deg clockwise from the forward jet. This prediction can be statistically tested through future observations
The putative center in NGC 1052
Context. Many active galaxies harbor powerful relativistic jets, however, the detailed mechanisms of their formation and acceleration remain poorly understood.
//
Aims. To investigate the area of jet acceleration and collimation with the highest available angular resolution, we study the innermost region of the bipolar jet in the nearby low-ionization nuclear emission-line region (LINER) galaxy NGC 1052.
//
Methods. We combined observations of NGC 1052 taken with VLBA, GMVA, and EHT over one week in the spring of 2017. Our study is focused on the size and continuum spectrum of the innermost region containing the central engine and the footpoints of both jets. We employed a synchrotron-self absorption model to fit the continuum radio spectrum and we combined the size measurements from close to the central engine out to ∼1 pc to study the jet collimation.
//
Results. For the first time, NGC 1052 was detected with the EHT, providing a size of the central region in-between both jet bases of 43 μas perpendicular to the jet axes, corresponding to just around 250 RS (Schwarzschild radii). This size estimate supports previous studies of the jets expansion profile which suggest two breaks of the profile at around 3 × 103 RS and 1 × 104 RS distances to the core. Furthermore, we estimated the magnetic field to be 1.25 Gauss at a distance of 22 μas from the central engine by fitting a synchrotron-self absorption spectrum to the innermost emission feature, which shows a spectral turn-over at ∼130 GHz. Assuming a purely poloidal magnetic field, this implies an upper limit on the magnetic field strength at the event horizon of 2.6 × 104 Gauss, which is consistent with previous measurements.
//
Conclusions. The complex, low-brightness, double-sided jet structure in NGC 1052 makes it a challenge to detect the source at millimeter (mm) wavelengths. However, our first EHT observations have demonstrated that detection is possible up to at least 230 GHz. This study offers a glimpse through the dense surrounding torus and into the innermost central region, where the jets are formed. This has enabled us to finally resolve this region and provide improved constraints on its expansion and magnetic field strength
First Sagittarius A∗ Event Horizon Telescope Results. VII. Polarization of the Ring
The Event Horizon Telescope observed the horizon-scale synchrotron emission region around the Galactic center supermassive black hole, SagittariusA* (SgrA*), in 2017. These observations revealed a bright, thick ring morphology with a diameter of 51.8 ± 2.3 μas and modest azimuthal brightness asymmetry, consistent with the expected appearance of a black hole with mass M ≈ 4 × 106 Me. From these observations, we present the first resolved linear and circular polarimetric images of Sgr A*. The linear polarization images demonstrate that the emission ring is highly polarized, exhibiting a prominent spiral electric vector polarization angle pattern with a peak fractional polarization of ∼40% in the western portion of the ring. The circular polarization images feature a modestly (∼5%–10%) polarized dipole structure along the emission ring, with negative circular polarization in the western region and positive circular polarization in the eastern region, although our methods exhibit stronger disagreement than for linear polarization. We analyze the data using multiple independent imaging and modeling methods, each of which is validated using a standardized suite of synthetic data sets. While the detailed spatial distribution of the linear polarization along the ring remains uncertain owing to the intrinsic variability of the source, the spiraling polarization structure is robust to methodological choices. The degree and orientation of the linear polarization provide stringent constraints for the black hole and its surrounding magnetic fields, which we discuss in an accompanying publication
Broadband multi-wavelength properties of M87 during the 2018 EHT campaign including a very high energy flaring episode
Context. The nearby elliptical galaxy M87 contains one of only two supermassive black holes whose emission surrounding the event horizon has been imaged by the Event Horizon Telescope (EHT). In 2018, more than two dozen multi-wavelength (MWL) facilities (from radio to γ-ray energies) took part in the second M87 EHT campaign.
Aims. The goal of this extensive MWL campaign was to better understand the physics of the accreting black hole M87*, the relationship between the inflow and inner jets, and the high-energy particle acceleration. Understanding the complex astrophysics is also a necessary first step towards performing further tests of general relativity.
Methods. The MWL campaign took place in April 2018, overlapping with the EHT M87* observations. We present a new, contemporaneous spectral energy distribution (SED) ranging from radio to very high-energy (VHE) γ-rays as well as details of the individual observations and light curves. We also conducted phenomenological modelling to investigate the basic source properties.
Results. We present the first VHE γ-ray flare from M87 detected since 2010. The flux above 350 GeV more than doubled within a period of ≈36 hours. We find that the X-ray flux is enhanced by about a factor of two compared to 2017, while the radio and millimetre core fluxes are consistent between 2017 and 2018. We detect evidence for a monotonically increasing jet position angle that corresponds to variations in the bright spot of the EHT image.
Conclusions. Our results show the value of continued MWL monitoring together with precision imaging for addressing the origins of high-energy particle acceleration. While we cannot currently pinpoint the precise location where such acceleration takes place, the new VHE γ-ray flare already presents a challenge to simple one-zone leptonic emission model approaches, and it emphasises the need for combined image and spectral modelling
First Very Long Baseline Interferometry Detections at 870 μm
The first very long baseline interferometry (VLBI) detections at 870 μm wavelength (345 GHz frequency) are reported, achieving the highest diffraction-limited angular resolution yet obtained from the surface of the Earth and the highest-frequency example of the VLBI technique to date. These include strong detections for multiple sources observed on intercontinental baselines between telescopes in Chile, Hawaii, and Spain, obtained during observations in 2018 October. The longest-baseline detections approach 11 Gλ, corresponding to an angular resolution, or fringe spacing, of 19 μas. The Allan deviation of the visibility phase at 870 μm is comparable to that at 1.3 mm on the relevant integration timescales between 2 and 100 s. The detections confirm that the sensitivity and signal chain stability of stations in the Event Horizon Telescope (EHT) array are suitable for VLBI observations at 870 μm. Operation at this short wavelength, combined with anticipated enhancements of the EHT, will lead to a unique high angular resolution instrument for black hole studies, capable of resolving the event horizons of supermassive black holes in both space and time
The persistent shadow of the supermassive black hole of M 87 : I. Observations, calibration, imaging, and analysis
In April 2019, the Event Horizon Telescope (EHT) Collaboration reported the first-ever event-horizon-scale images of a black hole, resolving the central compact radio source in the giant elliptical galaxy M 87. These images reveal a ring with a southerly brightness distribution and a diameter of ∼42 μas, consistent with the predicted size and shape of a shadow produced by the gravitationally lensed emission around a supermassive black hole. These results were obtained as part of the April 2017 EHT observation campaign, using a global very long baseline interferometric radio array operating at a wavelength of 1.3 mm. Here, we present results based on the second EHT observing campaign, taking place in April 2018 with an improved array, wider frequency coverage, and increased bandwidth. In particular, the additional baselines provided by the Greenland telescope improved the coverage of the array. Multiyear EHT observations provide independent snapshots of the horizon-scale emission, allowing us to confirm the persistence, size, and shape of the black hole shadow, and constrain the intrinsic structural variability of the accretion flow. We have confirmed the presence of an asymmetric ring structure, brighter in the southwest, with a median diameter of 43.3−3.1+1.5 μas. The diameter of the 2018 ring is remarkably consistent with the diameter obtained from the previous 2017 observations. On the other hand, the position angle of the brightness asymmetry in 2018 is shifted by about 30° relative to 2017. The perennial persistence of the ring and its diameter robustly support the interpretation that the ring is formed by lensed emission surrounding a Kerr black hole with a mass ∼6.5 × 109 M⊙. The significant change in the ring brightness asymmetry implies a spin axis that is more consistent with the position angle of the large-scale jet
First Sagittarius A* Event Horizon Telescope Results. VII. Polarization of the Ring
The Event Horizon Telescope observed the horizon-scale synchrotron emission region around the Galactic center supermassive black hole, Sagittarius A* (Sgr A*), in 2017. These observations revealed a bright, thick ring morphology with a diameter of 51.8 ± 2.3 μas and modest azimuthal brightness asymmetry, consistent with the expected appearance of a black hole with mass M ≈ 4 × 106M⊙. From these observations, we present the first resolved linear and circular polarimetric images of Sgr A*. The linear polarization images demonstrate that the emission ring is highly polarized, exhibiting a prominent spiral electric vector polarization angle pattern with a peak fractional polarization of ∼40% in the western portion of the ring. The circular polarization images feature a modestly (∼5%–10%) polarized dipole structure along the emission ring, with negative circular polarization in the western region and positive circular polarization in the eastern region, although our methods exhibit stronger disagreement than for linear polarization. We analyze the data using multiple independent imaging and modeling methods, each of which is validated using a standardized suite of synthetic data sets. While the detailed spatial distribution of the linear polarization along the ring remains uncertain owing to the intrinsic variability of the source, the spiraling polarization structure is robust to methodological choices. The degree and orientation of the linear polarization provide stringent constraints for the black hole and its surrounding magnetic fields, which we discuss in an accompanying publication
- …
