372 research outputs found
An Empirical Process Central Limit Theorem for Multidimensional Dependent Data
Let be the empirical process associated to an
-valued stationary process . We give general conditions,
which only involve processes for a restricted class of
functions , under which weak convergence of can be
proved. This is particularly useful when dealing with data arising from
dynamical systems or functional of Markov chains. This result improves those of
[DDV09] and [DD11], where the technique was first introduced, and provides new
applications.Comment: to appear in Journal of Theoretical Probabilit
Using the Bootstrap to test for symmetry under unknown dependence
This paper considers tests for symmetry of the one-dimensional marginal distribution of fractionally integrated processes. The tests are implemented by using an autoregressive sieve bootstrap approximation to the null sampling distribution of the relevant test statistics. The sieve bootstrap allows inference on symmetry to be carried out without knowledge of either the memory parameter of the data or of the appropriate norming factor for the test statistic and its asymptotic distribution. The small-sample properties of the proposed method are examined by means of Monte Carlo experiments, and applications to real-world data are also presented
Indirect Inference for Time Series Using the Empirical Characteristic Function and Control Variates
We estimate the parameter of a stationary time series process by minimizing
the integrated weighted mean squared error between the empirical and simulated
characteristic function, when the true characteristic functions cannot be
explicitly computed. Motivated by Indirect Inference, we use a Monte Carlo
approximation of the characteristic function based on iid simulated blocks. As
a classical variance reduction technique, we propose the use of control
variates for reducing the variance of this Monte Carlo approximation. These two
approximations yield two new estimators that are applicable to a large class of
time series processes. We show consistency and asymptotic normality of the
parameter estimators under strong mixing, moment conditions, and smoothness of
the simulated blocks with respect to its parameter. In a simulation study we
show the good performance of these new simulation based estimators, and the
superiority of the control variates based estimator for Poisson driven time
series of counts.Comment: 38 pages, 2 figure
Sharp error terms for return time statistics under mixing conditions
We describe the statistics of repetition times of a string of symbols in a
stochastic process. Denote by T(A) the time elapsed until the process spells
the finite string A and by S(A) the number of consecutive repetitions of A. We
prove that, if the length of the string grows unbondedly, (1) the distribution
of T(A), when the process starts with A, is well aproximated by a certain
mixture of the point measure at the origin and an exponential law, and (2) S(A)
is approximately geometrically distributed. We provide sharp error terms for
each of these approximations. The errors we obtain are point-wise and allow to
get also approximations for all the moments of T(A) and S(A). To obtain (1) we
assume that the process is phi-mixing while to obtain (2) we assume the
convergence of certain contidional probabilities
Limiting distributions for explosive PAR(1) time series with strongly mixing innovation
This work deals with the limiting distribution of the least squares
estimators of the coefficients a r of an explosive periodic autoregressive of
order 1 (PAR(1)) time series X r = a r X r--1 +u r when the innovation {u k }
is strongly mixing. More precisely {a r } is a periodic sequence of real
numbers with period P \textgreater{} 0 and such that P r=1 |a r |
\textgreater{} 1. The time series {u r } is periodically distributed with the
same period P and satisfies the strong mixing property, so the random variables
u r can be correlated
Viral population estimation using pyrosequencing
The diversity of virus populations within single infected hosts presents a
major difficulty for the natural immune response as well as for vaccine design
and antiviral drug therapy. Recently developed pyrophosphate based sequencing
technologies (pyrosequencing) can be used for quantifying this diversity by
ultra-deep sequencing of virus samples. We present computational methods for
the analysis of such sequence data and apply these techniques to pyrosequencing
data obtained from HIV populations within patients harboring drug resistant
virus strains. Our main result is the estimation of the population structure of
the sample from the pyrosequencing reads. This inference is based on a
statistical approach to error correction, followed by a combinatorial algorithm
for constructing a minimal set of haplotypes that explain the data. Using this
set of explaining haplotypes, we apply a statistical model to infer the
frequencies of the haplotypes in the population via an EM algorithm. We
demonstrate that pyrosequencing reads allow for effective population
reconstruction by extensive simulations and by comparison to 165 sequences
obtained directly from clonal sequencing of four independent, diverse HIV
populations. Thus, pyrosequencing can be used for cost-effective estimation of
the structure of virus populations, promising new insights into viral
evolutionary dynamics and disease control strategies.Comment: 23 pages, 13 figure
All-optical header processing in a 42.6Gb/s optoelectronic firewall
A novel architecture to enable future network security systems to provide effective protection in the context of continued traffic growth and the need to minimise energy consumption is proposed. It makes use of an all-optical pre-filtering stage operating at the line rate under software control to distribute incoming packets to specialised electronic processors. An experimental system that integrates software controls and electronic interfaces with an all-optical pattern recognition system has demonstrated the key functions required by the new architecture. As an example, the ability to sort packets arriving in a 42.6Gb/s data stream according to their service type was shown experimentally
Learning near-optimal policies with Bellman-residual minimization based fitted policy iteration and a single sample path
We consider the problem of finding a near-optimal policy in continuous space, discounted Markovian Decision Problems given the trajectory of some behaviour policy. We study the policy iteration algorithm where in successive iterations the action-value functions of the intermediate policies are obtained by picking a function from some fixed function set (chosen by the user) that minimizes an unbiased finite-sample approximation to a novel loss function that upper-bounds the unmodified Bellman-residual criterion. The main result is a finite-sample, high-probability bound on the performance of the resulting policy that depends on the mixing rate of the trajectory, the capacity of the function set as measured by a novel capacity concept that we call the VC-crossing dimension, the approximation power of the function set and the discounted-average concentrability of the future-state distribution. To the best of our knowledge this is the first theoretical reinforcement learning result for off-policy control learning over continuous state-spaces using a single trajectory
- …
