1,548 research outputs found
Intracellular dynamics of HIV infection
Early studies of HIV infection dynamics suggested that virus-producing HIV-infected cells had an average half-life of approximately 1 day. However, whether this average behavior is reflective of the dynamics of individual infected cells is unclear. Here, we use HIV-enhanced green fluorescent protein (EGFP) constructs and flow cytometry sorting to explore the dynamics of cell infection, viral protein production, and cell death in vitro. By following the numbers of productively infected cells expressing EGFP over time, we show that infected cell death slows down over time. Although infected cell death in vivo could be very different, our results suggest that the constant decay of cell numbers observed in vivo during antiretroviral treatment could reflect a balance of cell death and delayed viral protein production. We observe no correlation between viral protein production and death rate of productively infected cells, showing that viral protein production is not likely to be the sole determinant of the death of HIV-infected cells. Finally, we show that all observed features can be reproduced by a simple model in which infected cells have broad distributions of productive life spans, times to start viral protein production, and viral protein production rates. This broad spectrum of the level and timing of viral protein production provides new insights into the behavior and characteristics of HIV-infected cells
Averages of Fourier coefficients of Siegel modular forms and representation of binary quadratic forms by quadratic forms in four variables
Let be a a negative discriminant and let vary over a set of
representatives of the integral equivalence classes of integral binary
quadratic forms of discriminant . We prove an asymptotic formula for for the average over of the number of representations of by an
integral positive definite quaternary quadratic form and obtain results on
averages of Fourier coefficients of linear combinations of Siegel theta series.
We also find an asymptotic bound from below on the number of binary forms of
fixed discriminant which are represented by a given quaternary form. In
particular, we can show that for growing a positive proportion of the
binary quadratic forms of discriminant is represented by the given
quaternary quadratic form.Comment: v5: Some typos correcte
Testing Hardy nonlocality proof with genuine energy-time entanglement
We show two experimental realizations of Hardy ladder test of quantum
nonlocality using energy-time correlated photons, following the scheme proposed
by A. Cabello \emph{et al.} [Phys. Rev. Lett. \textbf{102}, 040401 (2009)].
Unlike, previous energy-time Bell experiments, these tests require precise
tailored nonmaximally entangled states. One of them is equivalent to the
two-setting two-outcome Bell test requiring a minimum detection efficiency. The
reported experiments are still affected by the locality and detection
loopholes, but are free of the post-selection loophole of previous energy-time
and time-bin Bell tests.Comment: 5 pages, revtex4, 6 figure
A forest typology for monitoring sustainable forest management: The case of European Forest Types
Sustainable forest management (SFM) is presently widely accepted as the overriding objective for forest policy and practice.
Regional processes are in progress all over the world to develop and implement criteria and indicators of SFM. In continental
Europe, a set of 35 Pan-European indicators has been endorsed under the Ministerial Conference on the Protection of
Forests in Europe (MCPFE) to measure progress towards SFM in the 44 countries of the region. The formulation of seven
indicators (forest area, growing stock, age structure/diameter distribution, deadwood, tree species composition, damaging
agents, naturalness) requires national data to be reported by forest types. Within the vast European forest area the values
taken by these indicators show a considerable range of variation, due to variable natural conditions and anthropogenic
influences. Given this variability, it is very difficult to grasp the meaning of these indicators when taken out of their ecological
background. The paper discusses the concepts behind, and the requirements of, a classification more soundly ecologically
framed and suitable for MCPFE reporting than the three (un-informative) classes adopted so far: broadleaved forest,
coniferous forest, mixed broadleaved and coniferous forest. We propose a European Forest Types scheme structured into a
reasonably higher number of classes, that would improve the specificity of the indicators reported under the MCPFE process
and its understanding.L'articolo è disponibile sul sito dell'editore www.tandf.co.uk/journals
Recommended from our members
Long-term changes to the frequency of occurrence of British moths are consistent with opposing and synergistic effects of climate and land-use changes
1. Species’ distributions are likely to be affected by a combination of environmental drivers. We used a data set of 11 million species occurrence records over the period 1970–2010 to assess changes in the frequency of occurrence of 673 macro-moth species in Great Britain. Groups of species with different predicted sensitivities showed divergent trends, which we interpret in the context of land-use and climatic changes.
2. A diversity of responses was revealed: 260 moth species declined significantly, whereas 160 increased significantly. Overall, frequencies of occurrence declined, mirroring trends in less species-rich, yet more intensively studied taxa.
3. Geographically widespread species, which were predicted to be more sensitive to land use than to climate change, declined significantly in southern Britain, where the cover of urban and arable land has increased.
4. Moths associated with low nitrogen and open environments (based on their larval host plant characteristics) declined most strongly, which is also consistent with a land-use change explanation.
5. Some moths that reach their northern (leading edge) range limit in southern Britain increased, whereas species restricted to northern Britain (trailing edge) declined significantly, consistent with a climate change explanation.
6. Not all species of a given type behaved similarly, suggesting that complex interactions between species’ attributes and different combinations of environmental drivers determine frequency of occurrence changes.
7. Synthesis and applications. Our findings are consistent with large-scale responses to climatic and land-use changes, with some species increasing and others decreasing. We suggest that land-use change (e.g. habitat loss, nitrogen deposition) and climate change are both major drivers of moth biodiversity change, acting independently and in combination. Importantly, the diverse responses revealed in this species-rich taxon show that multifaceted conservation strategies are needed to minimize negative biodiversity impacts of multiple environmental changes. We suggest that habitat protection, management and ecological restoration can mitigate combined impacts of land-use change and climate change by providing environments that are suitable for existing populations and also enable species to shift their ranges
Aquatic community response to volcanic eruptions on the Ecuadorian Andean flank: evidence from the palaeoecological record
Aquatic ecosystems in the tropical Andes are under increasing pressure from human modification of the landscape (deforestation and dams) and climatic change (increase of extreme events and 1.5 °C on average temperatures are projected for AD 2100). However, the resilience of these ecosystems to perturbations is poorly understood. Here we use a multi-proxy palaeoecological approach to assess the response of aquatic ecosystems to a major mechanism for natural disturbance, volcanic ash deposition. Specifically, we present data from two Neotropical lakes located on the eastern Andean flank of Ecuador. Laguna Pindo (1°27.132′S–78°04.847′W) is a tectonically formed closed basin surrounded by a dense mid-elevation forest, whereas Laguna Baños (0°19.328′S–78°09.175′W) is a glacially formed lake with an inflow and outflow in high Andean Páramo grasslands. In each lake we examined the dynamics of chironomids and other aquatic and semi-aquatic organisms to explore the effect of thick (> 5 cm) volcanic deposits on the aquatic communities in these two systems with different catchment features. In both lakes past volcanic ash deposition was evident from four large tephras dated to c.850 cal year BP (Pindo), and 4600, 3600 and 1500 cal year BP (Baños). Examination of the chironomid and aquatic assemblages before and after the ash depositions revealed no shift in composition at Pindo, but a major change at Baños occurred after the last event around 1500 cal year BP. Chironomids at Baños changed from an assemblage dominated by Pseudochironomus and Polypedilum nubifer-type to Cricotopus/Paratrichocladius type-II, and such a dominance lasted for approximately 380 years. We suggest that, despite potential changes in the water chemistry, the major effect on the chironomid community resulted from the thickness of the tephra being deposited, which acted to shallow the water body beyond a depth threshold. Changes in the aquatic flora and fauna at the base of the trophic chain can promote cascade effects that may deteriorate the ecosystem, especially when already influenced by human activities, such as deforestation and dams, which is frequent in the high Andes
Human Impacts on Forest Biodiversity in Protected Walnut-Fruit Forests in Kyrgyzstan
We used a spatially explicit model of forest dynamics, supported by empirical field data and socioeconomic data, to examine the impacts of human disturbances on a protected forest landscape in Kyrgyzstan. Local use of 27 fruit and nut species was recorded and modeled. Results indicated that in the presence of fuelwood cutting with or without grazing, species of high socioeconomic impor- tance such as Juglans regia, Malus spp., and Armeniaca vulgaris were largely eliminated from the landscape after 50–150 yr. In the absence of disturbance or in the presence of grazing only, decline of these species occurred at a much lower rate, owing to competi- tive interactions between tree species. This suggests that the current intensity of fuelwood harvesting is not sustainable. Conversely, cur- rent grazing intensities were found to have relatively little impact on forest structure and composition, and could potentially play a positive role in supporting regeneration of tree species. These results indicate that both positive and negative impacts on biodiversity can arise from human populations living within a protected area. Potentially, these could be reconciled through the development of participatory approaches to conservation management within this reserve, to ensure the maintenance of its high conservation value while meeting human needs
Contrasting stomatal sensitivity to temperature and soil drought in mature alpine conifers
Conifers growing at high elevations need to optimize their stomatal conductance (g(s)) for maximizing photosynthetic yield while minimizing water loss under less favourable thermal conditions. Yet the ability of high-elevation conifers to adjust their g(s) sensitivity to environmental drivers remains largely unexplored. We used 4 years of sap flow measurements to elucidate intraspecific and interspecific variability of g(s) in Larix decidua Mill. and Picea abies (L.) Karst along an elevational gradient and contrasting soil moisture conditions. Site- and species-specific g(s) response to main environmental drivers were examined, including vapour pressure deficit, air temperature, solar irradiance, and soil water potential. Our results indicate that maximum g(s) of L. decidua is >2 times higher, shows a more plastic response to temperature, and down-regulates g(s) stronger during atmospheric drought compared to P. abies. These differences allow L. decidua to exert more efficient water use, adjust to site-specific thermal conditions, and reduce water loss during drought episodes. The stronger plasticity of g(s) sensitivity to temperature and higher conductance of L. decidua compared to P. abies provide new insights into species-specific water use strategies, which affect species' performance and should be considered when predicting terrestrial water dynamics under future climatic change
Ecology good, aut-ecology better; Improving the sustainability of designed plantings
© 2015 European Council of Landscape Architecture Schools (ECLAS). This paper explores how contemporary ecological science, and aut-ecology in particular, can improve the sustainability of designed vegetation. It is proposed that ecological understanding can be applied to design at three levels: 1) as representation, 2) as process, and 3) as aut-ecology, representing a gradient from the least to the most profound. Key ecological interactions that determine the success of designed plantings are explored via a review of relevant ecological research, challenging some widely held but unhelpful constructs about how both semi-natural and designed vegetation actually function. The paper concludes that there are real benefits to integrating aut-ecological understanding in the design of vegetation at all scales but that this will require ecological theory to be taught as a design toolkit rather than largely as descriptive knowledge
- …
