13,722 research outputs found
Electromagnetic topology: Characterization of internal electromagnetic coupling
The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference
Experiments with a fully instrumented split Stirling cryocooler
A practical model that can be used to accurately size and optimally split stirling cryocoolers is discussed. A practical model that could be used to extrapolate existing designs to meet different specifications was developed. However, to do this detailed knowledge of the dynamic operating parameters of this type of cryocooler is required. The first stage is to fully instrument a refrigerator so that various dynamic parameters can be measured. The second stage involves the application of these measurements to the design and optimization of a range of coolers
A search for clusters and groups of galaxies on the line of sight towards 8 lensed quasars
In this paper we present new ESO/VLT FORS1 and ISAAC images of the fields
around eight gravitationally lensed quasars: CTQ414, HE0230-2130,
LBQS1009-0252, B1030+074, HE1104-1805, B1359+154, H1413+117 and HE2149-2745.
When available and deep enough, HST/WFPC2 data were also used to infer the
photometric redshifts of the galaxies around the quasars. The search of galaxy
overdensities in space and redshift, as well as a weak-shear analysis and a
mass reconstruction are presented in this paper. We find that there are most
probably galaxy groups towards CTQ414, HE0230-2130, B1359+154, H1413+117 and
HE2149-2745, with a mass ~ 4x10^14 M_sol h^-1. Considering its photometric
redshift, the galaxy group discovered in the field around HE1104-1805 is
associated with the quasar rather than with the lensing potential.Comment: 14 pages, 11 figures(.jpg
Topological properties of quantum periodic Hamiltonians
We consider periodic quantum Hamiltonians on the torus phase space
(Harper-like Hamiltonians). We calculate the topological Chern index which
characterizes each spectral band in the generic case. This calculation is made
by a semi-classical approach with use of quasi-modes. As a result, the Chern
index is equal to the homotopy of the path of these quasi-modes on phase space
as the Floquet parameter (\theta) of the band is varied. It is quite
interesting that the Chern indices, defined as topological quantum numbers, can
be expressed from simple properties of the classical trajectories.Comment: 27 pages, 14 figure
Collisional excitation of water by hydrogen atoms
We present quantum dynamical calculations that describe the rotational
excitation of HO due to collisions with H atoms. We used a recent, high
accuracy potential energy surface, and solved the collisional dynamics with the
close-coupling formalism, for total energies up to 12 000 cm. From these
calculations, we obtained collisional rate coefficients for the first 45 energy
levels of both ortho- and para-HO and for temperatures in the range T =
5-1500 K. These rate coefficients are subsequently compared to the values
previously published for the HO / He and HO / H collisional
systems. It is shown that no simple relation exists between the three systems
and that specific calculations are thus mandatory
Two-Qubit Separabilities as Piecewise Continuous Functions of Maximal Concurrence
The generic real (b=1) and complex (b=2) two-qubit states are 9-dimensional
and 15-dimensional in nature, respectively. The total volumes of the spaces
they occupy with respect to the Hilbert-Schmidt and Bures metrics are
obtainable as special cases of formulas of Zyczkowski and Sommers. We claim
that if one could determine certain metric-independent 3-dimensional
"eigenvalue-parameterized separability functions" (EPSFs), then these formulas
could be readily modified so as to yield the Hilbert-Schmidt and Bures volumes
occupied by only the separable two-qubit states (and hence associated
separability probabilities). Motivated by analogous earlier analyses of
"diagonal-entry-parameterized separability functions", we further explore the
possibility that such 3-dimensional EPSFs might, in turn, be expressible as
univariate functions of some special relevant variable--which we hypothesize to
be the maximal concurrence (0 < C <1) over spectral orbits. Extensive numerical
results we obtain are rather closely supportive of this hypothesis. Both the
real and complex estimated EPSFs exhibit clearly pronounced jumps of magnitude
roughly 50% at C=1/2, as well as a number of additional matching
discontinuities.Comment: 12 pages, 7 figures, new abstract, revised for J. Phys.
Giant Anisotropy of Spin-Orbit Splitting at the Bismuth Surface
We investigate the bismuth (111) surface by means of time and angle resolved
photoelectron spectroscopy. The parallel detection of the surface states below
and above the Fermi level reveals a giant anisotropy of the Spin-Orbit (SO)
spitting. These strong deviations from the Rashba-like coupling cannot be
treated in perturbation theory. Instead, first
principle calculations could accurately reproduce the experimental dispersion
of the electronic states. Our analysis shows that the giant anisotropy of the
SO splitting is due to a large out-of plane buckling of the spin and orbital
texture.Comment: 5 pages, 4 figure
Internal relaxation time in immersed particulate materials
We study the dynamics of the solid to liquid transition for a model material
made of elastic particles immersed in a viscous fluid. The interaction between
particle surfaces includes their viscous lubrication, a sharp repulsion when
they get closer than a tuned steric length and their elastic deflection induced
by those two forces. We use Soft Dynamics to simulate the dynamics of this
material when it experiences a step increase in the shear stress and a constant
normal stress. We observe a long creep phase before a substantial flow
eventually establishes. We find that the typical creep time relies on an
internal relaxation process, namely the separation of two particles driven by
the applied stress and resisted by the viscous friction. This mechanism should
be relevant for granular pastes, living cells, emulsions and wet foams
Ecoulement 3D dans une structure d'échangeur Confrontation Mesures Simulations
ACCUne exploration expérimentale et numérique des champs de vitesse d'un écoulement dans un échangeur de chaleur a été menée. Une méthode de mesure, non intrusive, de vélocimétrie par image de particuels (PIV) appliquée sur une maquette à l'échelle 1, associée à un filtrage puis à un filtrage puis à un traitement par flot optique et programmation dynamique, a permis de déterminer la distribution des vitesses dans les tubes de l'échangeur. Les simulations numériques montrent un bon accord avec la répartition des vitesses mesurées dans les canaux de l'échangeur
Upper bound on the density of Ruelle resonances for Anosov flows
Using a semiclassical approach we show that the spectrum of a smooth Anosov
vector field V on a compact manifold is discrete (in suitable anisotropic
Sobolev spaces) and then we provide an upper bound for the density of
eigenvalues of the operator (-i)V, called Ruelle resonances, close to the real
axis and for large real parts.Comment: 57 page
- …
