421 research outputs found
The Contribution of the Smectic-Nematic Interface to the Surface Energy
The contribution of the smectic-nematic interface to the surface energy of a
nematic liquid crystal sample is analyzed. By means of a simple model it is
shown that the surface energy depends on the thickness of the region over which
the transition smectic-nematic takes place. For perfectly flat substrates this
thickness is of the order of the correlation length entering in the transition.
An estimate of this contribution shows that it is greater than the one arising
from the nematic-substrate interaction. Moreover, it is also shown that the
surface energy determined in this way presents a non-monotonic behavior with
the temperature.Comment: 10 pages, revte
Primary tumor sidedness and benefit from FOLFOXIRI plus bevacizumab as initial therapy for metastatic colorectal cancer. Retrospective analysis of the TRIBE trial by GONO
Right-sided metastatic colorectal cancer (mCRC) patients have poor prognosis and achieve limited benefit from first-line doublets plus a targeted agent. In this unplanned analysis of the TRIBE study, we investigated the prognostic and predictive impact of primary tumor sidedness in mCRC patients and the differential impact of the intensification of the chemotherapy in subgroups defined according to both primary tumor sidedness and RAS and BRAF mutational status
Where does Cosmological Perturbation Theory Break Down?
We apply the effective field theory approach to the coupled metric-inflaton
system, in order to investigate the impact of higher dimension operators on the
spectrum of scalar and tensor perturbations in the short-wavelength regime. In
both cases, effective corrections at tree-level become important when the
Hubble parameter is of the order of the Planck mass, or when the physical wave
number of a cosmological perturbation mode approaches the square of the Planck
mass divided by the Hubble constant. Thus, the cut-off length below which
conventional cosmological perturbation theory does not apply is likely to be
much smaller than the Planck length. This has implications for the
observability of "trans-Planckian" effects in the spectrum of primordial
perturbations.Comment: 25 pages, uses FeynM
Effect of crystalline disorder on quantum tunneling in the single-molecule magnet Mn12 benzoate
10 páginas, 9 figuras, 1 tabla.-- PACS number(s): 75.45.+j, 75.50.Xx, 75.60.Jk, 75.50.Kj.-- et al.We report a detailed study of the effects that crystalline disorder has on the magnetic relaxation and quantum tunneling of Mn12 benzoate clusters. Thanks to the absence of interstitial molecules in the crystal structure of this molecular compound, we have been able to isolate the influence of long-range crystalline disorder. For this, we compare results obtained under two extreme situations: a crystalline sample and a nearly amorphous material. The results show that crystalline disorder affects little the anisotropy, magnetic relaxation, and quantum tunneling of these materials. It follows that disorder is not a necessary ingredient for the existence of magnetic quantum tunneling. The results unveil, however, a subtle influence of crystallinity via the modification of the symmetry of dipole-dipole interactions. The faster tunneling rates measured for the amorphous material are accounted for by a narrower distribution of dipolar bias in this material, as compared with the crystalline sample.This work has been partly funded by
Grants No. MAT2009-13977-C03, No. MAT2008-06542-
C04, and No. CSD2007-00010 from the Spanish Ministerio de Ciencia e Innovación, and NABISUP from DGA. We acknowledge funding from Acción Integrada under Grant No. HA2006-0051 and the Network of Excellence MAGMANet.
J.v.S and S.D. acknowledge the financial support of the Deutsche Forschungsgemeinschaft (DFG) and the DAAD. Ch.C. and I.I. acknowledge the Spanish Ministerio de Ciencia e Innovación.Peer reviewe
TeV Mini Black Hole Decay at Future Colliders
It is generally believed that mini black holes decay by emitting elementary
particles with a black body energy spectrum. The original calculation lead to
the conclusion that about the 90% of the black hole mass is radiated away in
the form of photons, neutrinos and light leptons, mainly electrons and muons.
With the advent of String Theory, such a scenario must be updated by including
new effects coming from the stringy nature of particles and interactions.By
taking for granted that black holes can be produced in hadronic collisions,
then their decay must take into account that: (i) we live in a D3-Brane
embedded into an higher dimensional bulk spacetime; (ii) fundamental
interactions, including gravity, are unified at TeV energy scale. Thus, the
formal description of the Hawking radiation mechanism has to be extended to the
case of more than four spacetime dimensions and include the presence of
D-branes. Furthermore, unification of fundamental interactions at an energy
scale many order of magnitude lower than the Planck energy implies that any
kind of fundamental particle, not only leptons, is expected to be emitted. A
detailed understanding of the new scenario is instrumental for optimal tuning
of detectors at future colliders, where, hopefully, this exciting new physics
will be tested. In this article we review higher dimensional black hole decay,
considering not only the emission of particles according to Hawking mechanism,
but also their near horizon QED/QCD interactions. The ultimate motivation is to
build up a phenomenologically reliable scenario, allowing a clear experimental
signature of the event.Comment: 22 pages, 9 figures, 4 tables; ``quick review'' for Class. and
Quantum Gra
Screening of cosmological constant for De Sitter Universe in non-local gravity, phantom-divide crossing and finite-time future singularities
We investigate de Sitter solutions in non-local gravity as well as in
non-local gravity with Lagrange constraint multiplier. We examine a condition
to avoid a ghost and discuss a screening scenario for a cosmological constant
in de Sitter solutions. Furthermore, we explicitly demonstrate that three types
of the finite-time future singularities can occur in non-local gravity and
explore their properties. In addition, we evaluate the effective equation of
state for the universe and show that the late-time accelerating universe may be
effectively the quintessence, cosmological constant or phantom-like phases. In
particular, it is found that there is a case in which a crossing of the phantom
divide from the non-phantom (quintessence) phase to the phantom one can be
realized when a finite-time future singularity occurs. Moreover, it is
demonstrated that the addition of an term can cure the finite-time future
singularities in non-local gravity. It is also suggested that in the framework
of non-local gravity, adding an term leads to possible unification of the
early-time inflation with the late-time cosmic acceleration.Comment: 42 pages, no figure, version accepted for publication in General
Relativity and Gravitatio
Dark Energy and Gravity
I review the problem of dark energy focusing on the cosmological constant as
the candidate and discuss its implications for the nature of gravity. Part 1
briefly overviews the currently popular `concordance cosmology' and summarises
the evidence for dark energy. It also provides the observational and
theoretical arguments in favour of the cosmological constant as the candidate
and emphasises why no other approach really solves the conceptual problems
usually attributed to the cosmological constant. Part 2 describes some of the
approaches to understand the nature of the cosmological constant and attempts
to extract the key ingredients which must be present in any viable solution. I
argue that (i)the cosmological constant problem cannot be satisfactorily solved
until gravitational action is made invariant under the shift of the matter
lagrangian by a constant and (ii) this cannot happen if the metric is the
dynamical variable. Hence the cosmological constant problem essentially has to
do with our (mis)understanding of the nature of gravity. Part 3 discusses an
alternative perspective on gravity in which the action is explicitly invariant
under the above transformation. Extremizing this action leads to an equation
determining the background geometry which gives Einstein's theory at the lowest
order with Lanczos-Lovelock type corrections. (Condensed abstract).Comment: Invited Review for a special Gen.Rel.Grav. issue on Dark Energy,
edited by G.F.R.Ellis, R.Maartens and H.Nicolai; revtex; 22 pages; 2 figure
Aderência aço e concreto: uma contribuição ao estudo do método APULOT usando concreto com borracha
The bond stress between steel and concrete is the essential condition to the good behaviour of reinforced concrete structures. To preview the use of concrete with waste incorporation for structural aims, the verification of its quality control is necessary, whether of compression strength and bond. This paper presents the study results about the viability use of APULOT tests, that is a bond tests, to prevent the compression strength of concrete with rubber addition. The purpose of APULOT tests become study in many laboratories in France and Brazil, where is to estimate the compression strength using the bond stress obtained in tests execute inside of building construction. Also the use of concrete with rubber addition to structural use has been made with safe because this kind of addition makes the concrete compression strength decrease. To study its compression strength behavior is also make part of this research. This work aims to contribute with standardization of APULOT tests, and also give conditions to use the concrete with rubber addition in structural elements with more safe75817844A aderência entre o concreto e o aço (armadura) é o principal fator do bom desempenho do concreto armado. Para prever a utilização do concreto com incorporação de resíduos para fins estruturais, a verificação do controle de qualidade se faz necessária, quer seja de sua resistência
à compressão axial quer seja de sua aderência. Este artigo apresenta os resultados do estudo sobre a viabilidade do ensaio de aderência aço-
-concreto, denominado ensaio APULOT, para estimativa da resistência à compressão axial do concreto com adição de fibras de borracha. A proposta do ensaio APULOT, vem sendo estudada em vários laboratórios de pesquisa, na França e no Brasil e consiste em determinar a resistência
à compressão axial do concreto, a partir dos resultados da tensão de aderência realizados na obra. A utilização do concreto com incorporação de
resíduos de borracha para fins estruturais deve ser feita com cautela, pois comprovadamente a adição de borracha no concreto faz com que a
resistência à compressão do mesmo venha a diminuir. Estudar seu comportamento quanto à resistência axial à compressão, além da aderência
aço e concreto, também é necessária. Este trabalho visa contribuir com a normalização do ensaio APULOT possibilitando um melhor controle
tecnológico em canteiros de obra, assim como verificar as condições de utilização para fins estruturais do concreto com resíduos de borrach
Mechanical and microstructural properties of redispersible polymer-gypsum composites
Studies on gypsum modified by polymers have been conducted to assess the potential of improvement in the mechanical performance, water resistance and increasing the setting time, facilitating its handling. Gypsum-based compounds made with different additions of redispersible polymers were studied, such as: ethylene-vinyl acetate (EVA), vinyl acetate terpolymer, vinyl laurate and vinyl chloride (VA/VL/VC), and vinyl acetate and vinyl versatate (VA/VeoVA). The influence on setting time, microstructural formation and on the bending performance was assessed, as well as and compression of the hardened gypsum. The composites were prepared using a polymer concentration of 5% and 10%, and water/gypsum ratio of 0.6. The addition of the polymer decreased the structural robustness and change in the microstructure. We concluded that the reduction in the amount of water through additives may allow a more complete and robust training of gypsum crystals and compounds with better mechanical performance223COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESnão te
Dynamics of Dynamics within a Single Data Acquisition Session: Variation in Neocortical Alpha Oscillations in Human MEG
Background
Behavioral paradigms applied during human recordings in electro- and magneto- encephalography (EEG and MEG) typically require 1–2 hours of data collection. Over this time scale, the natural fluctuations in brain state or rapid learning effects could impact measured signals, but are seldom analyzed.
Methods and Findings
We investigated within-session dynamics of neocortical alpha (7–14 Hz) rhythms and their allocation with cued-attention using MEG recorded from primary somatosensory neocortex (SI) in humans. We found that there were significant and systematic changes across a single ~1 hour recording session in several dimensions, including increased alpha power, increased differentiation in attention-induced alpha allocation, increased distinction in immediate time-locked post-cue evoked responses in SI to different visual cues, and enhanced power in the immediate cue-locked alpha band frequency response. Further, comparison of two commonly used baseline methods showed that conclusions on the evolution of alpha dynamics across a session were dependent on the normalization method used.
Conclusions
These findings are important not only as they relate to studies of oscillations in SI, they also provide a robust example of the type of dynamic changes in brain measures within a single session that are overlooked in most human brain imaging/recording studies.National Institutes of Health (U.S.) (P41RR14075)National Institutes of Health (U.S.) (K25MH072941)National Institutes of Health (U.S.) (K01AT003459)National Institutes of Health (U.S.) (1RO1-NS045130-01)National Institutes of Health (U.S.) (T32GM007484)National Science Foundation (U.S.) (0316933)Osher Lifelong Learning Institute
- …
