683 research outputs found
ARPES in the normal state of the cuprates: comparing the marginal Fermi liquid and spin fluctuation scenarios
We address the issue whether ARPES measurements of the spectral function near the Fermi surface in the normal state of near optimally doped
cuprates can distinguish between the marginal Fermi liquid scenario and the
spin-fluctuation scenario. We argue that the data for momenta near the Fermi
surface are equally well described by both theories, but this agreement is
nearly meaningless as in both cases one has to add to a large constant of yet unknown origin. We show that the data can be
well fitted by keeping only this constant term in the self-energy. To
distinguish between the two scenarios, one has to analyze the data away from
the Fermi surface, when the intrinsic piece in becomes
dominant.Comment: Accepted for publication in Europhysics Letters, Incorrect
interpretation of reference 10 correcte
Colloquium: Quantum interference of clusters and molecules
We review recent progress and future prospects of matter wave interferometry
with complex organic molecules and inorganic clusters. Three variants of a
near-field interference effect, based on diffraction by material
nanostructures, at optical phase gratings, and at ionizing laser fields are
considered. We discuss the theoretical concepts underlying these experiments
and the experimental challenges. This includes optimizing interferometer
designs as well as understanding the role of decoherence. The high sensitivity
of matter wave interference experiments to external perturbations is
demonstrated to be useful for accurately measuring internal properties of
delocalized nanoparticles. We conclude by investigating the prospects for
probing the quantum superposition principle in the limit of high particle mass
and complexity.Comment: 19 pages, 13 figures; v2: corresponds to published versio
Singularities in the optical response of cuprates
We argue that the detailed analysis of the optical response in cuprate
superconductors allows one to verify the magnetic scenario of superconductivity
in cuprates, as for strong coupling charge carriers to antiferromagnetic spin
fluctuations, the second derivative of optical conductivity should contain
detectable singularities at , , and
, where is the amplitude of the
superconducting gap, and is the resonance energy of spin
fluctuations measured in neutron scattering. We argue that there is a good
chance that these singularities have already been detected in the experiments
on optimally doped .Comment: 6 pages, 4 figure
Automatic Filters for the Detection of Coherent Structure in Spatiotemporal Systems
Most current methods for identifying coherent structures in
spatially-extended systems rely on prior information about the form which those
structures take. Here we present two new approaches to automatically filter the
changing configurations of spatial dynamical systems and extract coherent
structures. One, local sensitivity filtering, is a modification of the local
Lyapunov exponent approach suitable to cellular automata and other discrete
spatial systems. The other, local statistical complexity filtering, calculates
the amount of information needed for optimal prediction of the system's
behavior in the vicinity of a given point. By examining the changing
spatiotemporal distributions of these quantities, we can find the coherent
structures in a variety of pattern-forming cellular automata, without needing
to guess or postulate the form of that structure. We apply both filters to
elementary and cyclical cellular automata (ECA and CCA) and find that they
readily identify particles, domains and other more complicated structures. We
compare the results from ECA with earlier ones based upon the theory of formal
languages, and the results from CCA with a more traditional approach based on
an order parameter and free energy. While sensitivity and statistical
complexity are equally adept at uncovering structure, they are based on
different system properties (dynamical and probabilistic, respectively), and
provide complementary information.Comment: 16 pages, 21 figures. Figures considerably compressed to fit arxiv
requirements; write first author for higher-resolution version
On the Origin of Peak-dip-hump Structure in the In-plane Optical Conductivity of the High Cuprates; Role of Antiferromagnetic Spin Fluctuations of Short Range Order
An improved U(1) slave-boson approach is applied to study the optical
conductivity of the two dimensional systems of antiferromagnetically correlated
electrons over a wide range of hole doping and temperature. Interplay between
the spin and charge degrees of freedom is discussed to explain the origin of
the peak-dip-hump structure in the in-plane conductivity of high
cuprates. The role of spin fluctuations of short range order(spin singlet pair)
is investigated. It is shown that the spin fluctuations of the short range
order can cause the mid-infrared hump, by exhibiting a linear increase of the
hump frequency with the antiferromagnetic Heisenberg coupling strength
Kinetic Energy, Condensation Energy, Optical Sum Rule and Pairing Mechanism in High-Tc Cuprates
The mechanism of high-Tc superconductivity is investigated with interests on
the microscopic aspects of the condensation energy. The theoretical analysis is
performed on the basis of the FLEX approximation which is a microscopic
description of the spin-fluctuation-induced-superconductivity. Most of phase
transitions in strongly correlated electron system arise from the correlation
energy which is copmetitive to the kinetic energy. However, we show that the
kinetic energy cooperatively induces the superconductivity in the underdoped
region. This unusual decrease of kinetic energy below T_c is induced by the
feedback effect. The feedback effect induces the magnetic resonance mode as
well as the kink in the electronic dispersion, and alters the properties of
quasi-particles, such as mass renormalization and lifetime. The crossover from
BCS behavior to this unusual behavior occurs for hole dopings. On the other
hand, the decrease of kinetic energy below T_c does not occur in the
electron-doped region. We discuss the relation to the recent obserbation of the
violation of optical sum rule
Observation of the second harmonic in superconducting current-phase relation of Nb/Au/(001)YBa2Cu3Ox heterojunctions
The superconducting current-phase relation (CPR) of Nb/Au/(001)YBa2Cu3Ox
heterojunctions prepared on epitaxial c-axis oriented YBa2Cu3Ox thin films has
been measured in a single-junction interferometer. For the first time, the
second harmonic of the CPR of such junctions has been observed. The appearance
of the second harmonic and the relative sign of the first and second harmonics
of the CPR can be explained assuming, that the macroscopic pairing symmetry of
our YBa2Cu3Ox thin films is of the d+s typeComment: 11 pages, 4 figure
Concept of an ionizing time-domain matter-wave interferometer
We discuss the concept of an all-optical and ionizing matter-wave
interferometer in the time domain. The proposed setup aims at testing the wave
nature of highly massive clusters and molecules, and it will enable new
precision experiments with a broad class of atoms, using the same laser system.
The propagating particles are illuminated by three pulses of a standing
ultraviolet laser beam, which detaches an electron via efficient single
photon-absorption. Optical gratings may have periods as small as 80 nm, leading
to wide diffraction angles for cold atoms and to compact setups even for very
massive clusters. Accounting for the coherent and the incoherent parts of the
particle-light interaction, we show that the combined effect of phase and
amplitude modulation of the matter waves gives rise to a Talbot-Lau-like
interference effect with a characteristic dependence on the pulse delay time.Comment: 25 pages, 5 figure
- …
