1,595 research outputs found
Spin-gap phase in nearly-half-filled one-dimensional conductors coupled with phonons
Asymptotic properties of nearly-half-filled one-dimensional conductors
coupled with phonons are studied through a renormalization group method. Due to
spin-charge coupling via electron-phonon interaction, the spin correlation
varies with filling as well as the charge correlation. Depending on the
relation between cut-off energy scales of the Umklapp process and of the
electron-phonon interaction, various phases appear. We found a metallic phase
with a spin gap and a dominant charge- density-wave correlation near half
filling between a gapless density-wave phase (like in the doped repulsive
Hubbard model) and a superconductor phase with a spin gap. The spin gap is
produced by phonon-assisted backward scatterings which are interfered with the
Umklapp process constructively or destructively depending on the character of
electron-phonon coupling.Comment: 14 pages, revtex, replaced 5 ps figures, published in PR
Theoretical evidence for strong correlations and incoherent metallic state in FeSe
The role of electronic Coulomb correlations in iron-based superconductors is
an important open question. We provide theoretical evidence for strong
correlation effects in the FeSe compound, based on dynamical mean field
calculations. A lower Hubbard band is found in the spectral properties.
Moreover, together with significant orbital-dependent mass enhancements, we
find that the normal state is a bad metal over an extended temperature range,
implying a non-Fermi liquid. Predictions for angle-resolved photoemission
spectroscopy are made.Comment: 5 pages, 5 figures, published versio
Tricritical Behavior in Charge-Order System
Tricritical point in charge-order systems and its criticality are studied for
a microscopic model by using the mean-field approximation and exchange Monte
Carlo method in the classical limit as well as by using the Hartree-Fock
approximation for the quantum model. We study the extended Hubbard model and
show that the tricritical point emerges as an endpoint of the first-order
transition line between the disordered phase and the charge-ordered phase at
finite temperatures. Strong divergences of several fluctuations at zero
wavenumber are found and analyzed around the tricritical point. Especially, the
charge susceptibility chi_c and the susceptibility of the next-nearest-neighbor
correlation chi_R are shown to diverge and their critical exponents are derived
to be the same as the criticality of the susceptibility of the double occupancy
chi_D0. The singularity of conductivity at the tricritical point is clarified.
We show that the singularity of the conductivity sigma is governed by that of
the carrier density and is given as
|sigma-sigma_c|=|g-g_c|^{p_t}Alog{|g-g_{c}|}+B), where g is the effective
interaction of the Hubbard model, sigma_c g_c represents the critical
conductivity(interaction) and A and B are constants, respectively. Here, in the
canonical ensemble, we obtain p_t=2beta_t=1/2 at the tricritical point. We also
show that p_t changes into p_{t}'=2beta=1 at the tricritical point in the
grand-canonical ensemble when the tricritical point in the canonical ensemble
is involved within the phase separation region. The results are compared with
available experimental results of organic conductor (DI-DCNQI)2Ag.Comment: 20 pages, 32 figures, to appear in J. Phys. Soc. Jpn.
Vol.75(2006)No.
Magnetic and Metal-Insulator Transitions through Bandwidth Control in Two-Dimensional Hubbard Models with Nearest and Next-Nearest Neighbor Transfers
Numerical studies on Mott transitions caused by the control of the ratio
between bandwidth and electron-electron interaction () are reported. By
using the recently proposed path-integral renormalization group(PIRG)
algorithm, physical properties near the transitions in the ground state of
two-dimensional half-filled models with the nearest and the next-nearest
neighbor transfers ( and , respectively) are studied as a prototype of
geometrically frustrated system. The nature of the bandwidth-control
transitions shows sharp contrast with that of the filling-control transitions:
First, the metal-insulator and magnetic transitions are separated each other
and the metal-insulator (MI) transition occurs at smaller , although the
both transition interactions increase with increasing . Both
transitions do not contradict the first-order transitions for smaller
while the MI transitions become continuous type accompanied by emergence of
{\it unusual metallic phase} near the transition for large . A
nonmagnetic insulator phase is stabilized between MI and AF transitions. The
region of the nonmagnetic insulator becomes wider with increasing . The
phase diagram naturally connects two qualitatively different limits, namely the
Hartree-Fock results at small and speculations in the strong coupling
Heisenberg limit.Comment: 30 pages including 20 figure
Insulator-Metal Transition in the One and Two-Dimensional Hubbard Models
We use Quantum Monte Carlo methods to determine Green functions,
, on lattices up to for the 2D Hubbard model
at . For chemical potentials, , within the Hubbard gap, , and at {\it long} distances, , with critical behavior: , . This result stands in agreement with the
assumption of hyperscaling with correlation exponent and dynamical
exponent . In contrast, the generic band insulator as well as the
metal-insulator transition in the 1D Hubbard model are characterized by and .Comment: 9 pages (latex) and 5 postscript figures. Submitted for publication
in Phys. Rev. Let
Absence of Translational Symmetry Breaking in Nonmagnetic Insulator Phase on Two-Dimensional Lattice with Geometrical Frustration
The ground-state properties of the two-dimensional Hubbard model with
nearest-neighbor and next-nearest-neighbor hoppings at half filling are studied
by the path-integral-renormalization-group method. The nonmagnetic-insulator
phase sandwiched by the the paramagnetic-metal phase and the
antiferromagnetic-insulator phase shows evidence against translational symmetry
breaking of the dimerized state, plaquette singlet state, staggered flux state,
and charge ordered state. These results support that the genuine Mott insulator
which cannot be adiabatically continued to the band insulator is realized
generically by Umklapp scattering through the effects of geometrical
frustration and quantum fluctuation in the two-dimensional system.Comment: 4 pages and 7 figure
Quantum Transition between an Antiferromagnetic Mott Insulator and Superconductor in Two Dimensions
We consider a Hubbard model on a square lattice with an additional
interaction, , which depends upon the square of a near-neighbor hopping. At
half-filling and a constant value of the Hubbard repulsion, increasing the
strength of the interaction drives the system from an antiferromagnetic
Mott insulator to a superconductor. This conclusion is reached
on the basis of zero temperature quantum Monte Carlo simulations on lattice
sizes up to .Comment: 4 pages (latex) and 4 postscript figure
Extrapolation method in shell model calculations with deformed basis
An extrapolation method in shell model calculations with deformed basis is
presented, which uses a scaling property of energy and energy variance for a
series of systematically approximated wave functions to the true one. Such
approximated wave functions are given by variation-after-projection method
concerning the full angular momentum projection. This extrapolation needs
energy variance, which amounts to the calculation of expectation value of
square of Hamiltonian . We present the method to evaluate this
matrix element and show that large reduction of its numerical computation can
be done by taking an advantage of time-reversal symmetry. The numerical tests
are presented for shell calculations with a realistic residual
interaction.Comment: 5 pages, 2 figures, accepted for publication in Phys. Rev.
Antiferro-quadrupole state of orbital-degenerate Kondo lattice model with f^2 configuration
To clarify a key role of orbitals in the emergence of
antiferro-quadrupole structure in PrPb, we investigate the ground-state
property of an orbital-degenerate Kondo lattice model by numerical
diagonalization techniques. In PrPb, Pr has a
configuration and the crystalline-electric-field ground state is a non-Kramers
doublet . In a - coupling scheme, the state is
described by two local singlets, each of which consists of two electrons
with one in and another in orbitals. Since in a cubic
structure, has localized nature, while orbitals are
rather itinerant, we propose the orbital-degenerate Kondo lattice model for an
effective Hamiltonian of PrPb. We show that an antiferro-orbital state is
favored by the so-called double-exchange mechanism which is characteristic of
multi-orbital systems.Comment: 3 pages, 3 figures, Proceedings of Skutterudite2007 (September 26-30,
2007, Kobe
Scaling Properties of Antiferromagnetic Transition in Coupled Spin Ladder Systems Doped with Nonmagnetic Impurities
We study effects of interladder coupling on critical magnetic properties of
spin ladder systems doped with small concentrations of nonmagnetic impurities,
using the scaling theory together with quantum Monte Carlo (QMC) calculations.
Scaling properties in a wide region in the parameter space of the impurity
concentration x and the interladder coupling are governed by the quantum
critical point (QCP) of the undoped system for the transition between
antiferromagnetically ordered and spin-gapped phases. This multi-dimensional
and strong-coupling region has characteristic power-law dependences on x for
magnetic properties such as the N\'eel temperature. The relevance of this
criticality for understanding experimental results of ladder compounds is
stressed.Comment: 4 pages LaTeX including 3 PS figure
- …
