1,595 research outputs found

    Spin-gap phase in nearly-half-filled one-dimensional conductors coupled with phonons

    Full text link
    Asymptotic properties of nearly-half-filled one-dimensional conductors coupled with phonons are studied through a renormalization group method. Due to spin-charge coupling via electron-phonon interaction, the spin correlation varies with filling as well as the charge correlation. Depending on the relation between cut-off energy scales of the Umklapp process and of the electron-phonon interaction, various phases appear. We found a metallic phase with a spin gap and a dominant charge- density-wave correlation near half filling between a gapless density-wave phase (like in the doped repulsive Hubbard model) and a superconductor phase with a spin gap. The spin gap is produced by phonon-assisted backward scatterings which are interfered with the Umklapp process constructively or destructively depending on the character of electron-phonon coupling.Comment: 14 pages, revtex, replaced 5 ps figures, published in PR

    Theoretical evidence for strong correlations and incoherent metallic state in FeSe

    Full text link
    The role of electronic Coulomb correlations in iron-based superconductors is an important open question. We provide theoretical evidence for strong correlation effects in the FeSe compound, based on dynamical mean field calculations. A lower Hubbard band is found in the spectral properties. Moreover, together with significant orbital-dependent mass enhancements, we find that the normal state is a bad metal over an extended temperature range, implying a non-Fermi liquid. Predictions for angle-resolved photoemission spectroscopy are made.Comment: 5 pages, 5 figures, published versio

    Tricritical Behavior in Charge-Order System

    Full text link
    Tricritical point in charge-order systems and its criticality are studied for a microscopic model by using the mean-field approximation and exchange Monte Carlo method in the classical limit as well as by using the Hartree-Fock approximation for the quantum model. We study the extended Hubbard model and show that the tricritical point emerges as an endpoint of the first-order transition line between the disordered phase and the charge-ordered phase at finite temperatures. Strong divergences of several fluctuations at zero wavenumber are found and analyzed around the tricritical point. Especially, the charge susceptibility chi_c and the susceptibility of the next-nearest-neighbor correlation chi_R are shown to diverge and their critical exponents are derived to be the same as the criticality of the susceptibility of the double occupancy chi_D0. The singularity of conductivity at the tricritical point is clarified. We show that the singularity of the conductivity sigma is governed by that of the carrier density and is given as |sigma-sigma_c|=|g-g_c|^{p_t}Alog{|g-g_{c}|}+B), where g is the effective interaction of the Hubbard model, sigma_c g_c represents the critical conductivity(interaction) and A and B are constants, respectively. Here, in the canonical ensemble, we obtain p_t=2beta_t=1/2 at the tricritical point. We also show that p_t changes into p_{t}'=2beta=1 at the tricritical point in the grand-canonical ensemble when the tricritical point in the canonical ensemble is involved within the phase separation region. The results are compared with available experimental results of organic conductor (DI-DCNQI)2Ag.Comment: 20 pages, 32 figures, to appear in J. Phys. Soc. Jpn. Vol.75(2006)No.

    Magnetic and Metal-Insulator Transitions through Bandwidth Control in Two-Dimensional Hubbard Models with Nearest and Next-Nearest Neighbor Transfers

    Full text link
    Numerical studies on Mott transitions caused by the control of the ratio between bandwidth and electron-electron interaction (UU) are reported. By using the recently proposed path-integral renormalization group(PIRG) algorithm, physical properties near the transitions in the ground state of two-dimensional half-filled models with the nearest and the next-nearest neighbor transfers (t-t and tt', respectively) are studied as a prototype of geometrically frustrated system. The nature of the bandwidth-control transitions shows sharp contrast with that of the filling-control transitions: First, the metal-insulator and magnetic transitions are separated each other and the metal-insulator (MI) transition occurs at smaller UU, although the both transition interactions UU increase with increasing tt'. Both transitions do not contradict the first-order transitions for smaller t/tt'/t while the MI transitions become continuous type accompanied by emergence of {\it unusual metallic phase} near the transition for large t/tt'/t. A nonmagnetic insulator phase is stabilized between MI and AF transitions. The region of the nonmagnetic insulator becomes wider with increasing t/tt'/t. The phase diagram naturally connects two qualitatively different limits, namely the Hartree-Fock results at small t/tt'/t and speculations in the strong coupling Heisenberg limit.Comment: 30 pages including 20 figure

    Insulator-Metal Transition in the One and Two-Dimensional Hubbard Models

    Full text link
    We use Quantum Monte Carlo methods to determine T=0T=0 Green functions, G(r,ω)G(\vec{r}, \omega), on lattices up to 16×1616 \times 16 for the 2D Hubbard model at U/t=4U/t =4. For chemical potentials, μ\mu, within the Hubbard gap, μ<μc |\mu | < \mu_c, and at {\it long} distances, r\vec{r}, G(r,ω=μ)er/ξlG(\vec{r}, \omega = \mu) \sim e^{ -|\vec{r}|/\xi_l} with critical behavior: ξlμμcν\xi_l \sim | \mu - \mu_c |^{-\nu}, ν=0.26±0.05 \nu = 0.26 \pm 0.05. This result stands in agreement with the assumption of hyperscaling with correlation exponent ν=1/4\nu = 1/4 and dynamical exponent z=4z = 4. In contrast, the generic band insulator as well as the metal-insulator transition in the 1D Hubbard model are characterized by ν=1/2\nu = 1/2 and z=2z = 2.Comment: 9 pages (latex) and 5 postscript figures. Submitted for publication in Phys. Rev. Let

    Absence of Translational Symmetry Breaking in Nonmagnetic Insulator Phase on Two-Dimensional Lattice with Geometrical Frustration

    Full text link
    The ground-state properties of the two-dimensional Hubbard model with nearest-neighbor and next-nearest-neighbor hoppings at half filling are studied by the path-integral-renormalization-group method. The nonmagnetic-insulator phase sandwiched by the the paramagnetic-metal phase and the antiferromagnetic-insulator phase shows evidence against translational symmetry breaking of the dimerized state, plaquette singlet state, staggered flux state, and charge ordered state. These results support that the genuine Mott insulator which cannot be adiabatically continued to the band insulator is realized generically by Umklapp scattering through the effects of geometrical frustration and quantum fluctuation in the two-dimensional system.Comment: 4 pages and 7 figure

    Quantum Transition between an Antiferromagnetic Mott Insulator and dx2y2d_{x^2 - y^2} Superconductor in Two Dimensions

    Full text link
    We consider a Hubbard model on a square lattice with an additional interaction, WW, which depends upon the square of a near-neighbor hopping. At half-filling and a constant value of the Hubbard repulsion, increasing the strength of the interaction WW drives the system from an antiferromagnetic Mott insulator to a dx2y2d_{x^2 -y^2} superconductor. This conclusion is reached on the basis of zero temperature quantum Monte Carlo simulations on lattice sizes up to 16×1616 \times 16.Comment: 4 pages (latex) and 4 postscript figure

    Extrapolation method in shell model calculations with deformed basis

    Full text link
    An extrapolation method in shell model calculations with deformed basis is presented, which uses a scaling property of energy and energy variance for a series of systematically approximated wave functions to the true one. Such approximated wave functions are given by variation-after-projection method concerning the full angular momentum projection. This extrapolation needs energy variance, which amounts to the calculation of expectation value of square of Hamiltonian H^2\hat{H}^2. We present the method to evaluate this matrix element and show that large reduction of its numerical computation can be done by taking an advantage of time-reversal symmetry. The numerical tests are presented for fpfp shell calculations with a realistic residual interaction.Comment: 5 pages, 2 figures, accepted for publication in Phys. Rev.

    Antiferro-quadrupole state of orbital-degenerate Kondo lattice model with f^2 configuration

    Full text link
    To clarify a key role of ff orbitals in the emergence of antiferro-quadrupole structure in PrPb3_{3}, we investigate the ground-state property of an orbital-degenerate Kondo lattice model by numerical diagonalization techniques. In PrPb3_{3}, Pr3+^{3+} has a 4f24f^{2} configuration and the crystalline-electric-field ground state is a non-Kramers doublet Γ3\Gamma_{3}. In a jj-jj coupling scheme, the Γ3\Gamma_{3} state is described by two local singlets, each of which consists of two ff electrons with one in Γ7\Gamma_{7} and another in Γ8\Gamma_{8} orbitals. Since in a cubic structure, Γ7\Gamma_{7} has localized nature, while Γ8\Gamma_{8} orbitals are rather itinerant, we propose the orbital-degenerate Kondo lattice model for an effective Hamiltonian of PrPb3_{3}. We show that an antiferro-orbital state is favored by the so-called double-exchange mechanism which is characteristic of multi-orbital systems.Comment: 3 pages, 3 figures, Proceedings of Skutterudite2007 (September 26-30, 2007, Kobe

    Scaling Properties of Antiferromagnetic Transition in Coupled Spin Ladder Systems Doped with Nonmagnetic Impurities

    Full text link
    We study effects of interladder coupling on critical magnetic properties of spin ladder systems doped with small concentrations of nonmagnetic impurities, using the scaling theory together with quantum Monte Carlo (QMC) calculations. Scaling properties in a wide region in the parameter space of the impurity concentration x and the interladder coupling are governed by the quantum critical point (QCP) of the undoped system for the transition between antiferromagnetically ordered and spin-gapped phases. This multi-dimensional and strong-coupling region has characteristic power-law dependences on x for magnetic properties such as the N\'eel temperature. The relevance of this criticality for understanding experimental results of ladder compounds is stressed.Comment: 4 pages LaTeX including 3 PS figure
    corecore