913 research outputs found
Intake Ground Vortex Prediction Methods
For an aircraft turbofan engine in ground operations or during the take-off run a ground vortex can occur which is ingested and could potentially adversely affect the engine performance and operation. The vortex characteristics depend on the ground clearance, intake flow capture ratio and the relative wind vector. It is a complex flow for which there is currently very little appropriate quantitative preliminary design information. These aspects are addressed in this work where a range of models are developed to provide a method for estimating the key metrics such as the formation boundary and the ground vortex size and strength. Three techniques are presented which utilize empirical, analytical and semi-empirical approaches. The empirical methods are primarily based on a large dataset of model-scale experiments which quantitatively measured the ground vortex characteristics for a wide range of configurations. These include the effects of intake ground clearance, approaching boundary layer thickness, intake Mach number and capture velocity ratio. Overall the models are able to predict some of the key measured behaviours such as the velocity ratio for maximum vortex strength. With increasing empiricism for key sub-elements of the model construction, an increasing level of agreement is found with the experimental results. Overall the three techniques provide a relatively quick and easy method in establishing the important vortex characteristics for a given headwind configuration which is of significant use from a practical engineering perspective
Intake ground vortex characteristics
The development of ground vortices when an intake operates in close proximity to the ground has been studied computationally for several configurations including front and rear quarter approaching flows as well as tailwind arrangements. The investigations have been conducted at model scale using a generic intake geometry. Reynolds Averaged Navier–Stokes calculations have been used and an initial validation of the computational model has been carried out against experimental data. The computational method has subsequently been applied to configurations that are difficult to test experimentally by including tailwind and rear quarter flows. The results, along with those from a previous compatible study of headwind and pure cross-wind configurations, have been used to assess the ground vortex behaviour under a broad range of velocity ratios and approaching wind angles. The characteristics provide insights on the influence of the size and strength of ground vortices on the overall quality of the flow ingested by the intake
Poincaré inequalities and Sobolev spaces
Our understsanding of the interplay between Poincaré inequalities, Sobolev inequalities and the geometry of the underlying space has changed considerably in recent years. These changes have simultaneously provided new insights into the classical theory and allowed much of that theory to be extended to a wide variety of different settings. This paper reviews some of these new results and techniques and concludes with an example on the preservation of Sobolev spaces by the maximal function
Raising Bi-O bands above the Fermi energy level of hole-doped BiSrCaCuO and other cuprate superconductors
The Fermi surface (FS) of BiSrCaCuO
(Bi2212) predicted by band theory displays Bi-related pockets around the
point, which have never been observed experimentally. We show that
when the effects of hole doping either by substituting Pb for Bi or by adding
excess O in Bi2212 are included, the Bi-O bands are lifted above the Fermi
energy () and the resulting first-principles FS is in remarkable accord
with measurements. With decreasing hole-doping the Bi-O bands drop below
and the system self-dopes below a critical hole concentration. Computations on
other Bi- as well as Tl- and Hg-based compounds indicate that lifting of the
cation-derived band with hole doping is a general property of the electronic
structures of the cuprates.Comment: 4 pages, 4 figures; PRL (2006, in press
Angular dependent vortex pinning mechanisms in YBCO coated conductors and thin films
We present a comparative study of the angular dependent critical current
density in YBa2Cu3O7 films deposited on IBAD MgO and on single crystal MgO and
SrTiO3 substrates. We identify three angular regimes where pinning is dominated
by different types of correlated and uncorrelated defects. We show that those
regimes are present in all cases, indicating that the pinning mechanisms are
the same, but their extension and characteristics are sample dependent,
reflecting the quantitative differences in texture and defect density. In
particular, the more defective nature of the films on IBAD turns into an
advantage as it results in stronger vortex pinning, demonstrating that the
critical current density of the films on single crystals is not an upper limit
for the performance of the IBAD coated conductors.Comment: 14 pages, 3 figures. Submitted to AP
Normal state properties of high angle grain boundaries in (Y,Ca)Ba2Cu3O7-delta
By lithographically fabricating an optimised Wheatstone bridge geometry, we
have been able to make accurate measurements of the resistance of grain
boundaries in Y1-xCaxBa2Cu3O7-d between the superconducting transition
temperature, Tc, and room temperature. Below Tc the normal state properties
were assessed by applying sufficiently high currents. The behaviour of the
grain boundary resistance versus temperature and of the conductance versus
voltage are discussed in the framework charge transport through a tunnel
barrier. The influence of misorientation angle, oxygen content, and calcium
doping on the normal state properties is related to changes of the height and
shape of the grain boundary potential barrier.Comment: 17 pages, 1 table, 5 figures, submitted to PR
Oil-based adjuvants improve fungicide activity against downy mildew in glasshouse grown onion seedlings
Fatalities due to intestinal obstruction following the ingestion of foreign bodies
Two fatalities due to an occlusive ileus following the ingestion of foreign bodies in patients with psychiatric disorders are described. A severely mentally handicapped young man developed a temperature and died 1 h after admission to a surgical ward. At autopsy, not, vert, similar 2000 cm3 of foreign material, including broken glass and porcelain, branches, buttons, parts of clothing and other material were found in the gastrointestinal tract, leading to a complete obstruction of the distal intestine and colon with resulting faecal vomiting. The other case was even more unusual as a hair fetishist had swallowed a thick strand of his own hair, 50 cm long, also resulting in mechanical obstruction of the distal intestine
Induced magnetization in LaSrMnO/BiFeO superlattices
Using polarized neutron reflectometry (PNR), we observe an induced
magnetization of 75 25 kA/m at 10 K in a LaSrMnO
(LSMO)/BiFeO superlattice extending from the interface through several
atomic layers of the BiFeO (BFO). The induced magnetization in BFO is
explained by density functional theory, where the size of bandgap of BFO plays
an important role. Considering a classical exchange field between the LSMO and
BFO layers, we further show that magnetization is expected to extend throughout
the BFO, which provides a theoretical explanation for the results of the
neutron scattering experiment.Comment: 5 pages, 4 figures, with Supplemental Materials. To appear in
Physical Review Letter
- …
