2,013 research outputs found

    Laser ion acceleration using a solid target coupled with a low density layer

    Full text link
    We investigate by particle-in-cell simulations in two and three dimensions the laser-plasma interaction and the proton acceleration in multilayer targets where a low density "near-critical" layer of a few micron thickness is added on the illuminated side of a thin, high density layer. This target design can be obtained by depositing a "foam" layer on a thin metallic foil. The presence of the near-critical plasma strongly increases both the conversion efficiency and the energy of electrons and leads to enhanced acceleration of proton from a rear side layer via the Target Normal Sheath Acceleration mechanism. The electrons of the foam are strongly accelerated in the forward direction and propagate on the rear side of the target building up a high electric field with a relatively flat longitudinal profile. In these conditions the maximum proton energy is up to three times higher than in the case of the bare solid target.Comment: 9 pages, 11 figures. Submitted to Physical Review

    THERMODYNAMIC ORC CYCLE DESIGN OPTIMIZATION FOR MEDIUM-LOW TEMPERATURE ENERGY SOURCES

    Get PDF
    In the large spectrum of organic fluids suitable for Rankine cycles, a fluid that is already wellknown and available on industrial scale but currently excluded from this kind of application has been selected. This choice is due to the remarkable characteristics of the fluid, such as its high molecular weight, good thermal stability, non-flammability, and atoxicity. Compared to those fluids nowadays common in the ORC market, its thermodynamic properties and fluid dynamic behavior lead to a peculiar configuration of the cycle: • Supercritical cycle, when heat input is at medium-high temperature; • Massive regeneration, to obtain higher efficiency; • Low specific work of the turbine; • Relatively high volumetric expansion ratio and relatively low absolute inlet volumetric flow; Accordingly, an innovative cycle design has been developed, including a once-through Hairpin primary heat exchanger and a multi-stage radial outflow expander. This last innovative component has been designed to get the best performance with the chosen fluid: • The high inlet/outlet volumetric flow ratio is well combined with the change in cross section across the radius; • Compared to an axial turbine, the lower inlet volumetric flow is compensated by higher blades at the first stage. It is feasible thanks to the change in section available along the radius, so that there is no need for partial admission; • The prismatic blade leads to constant velocity diagrams across the blade span; • It minimizes tip leakages and disk friction losses, due to the single disk / multi-stage configuration; • The intrinsical limit of a radial outflow expander to develop high enthalpy drop is not relevant for this cycle, presenting itself a very low enthalpy drop. Moreover the tip speed is limited by the low speed of sound and consequently this kind of expander suits well with this cycle arrangement. The results of this study, conducted through thermodynamic simulations, CFD, stress analysis and economic optimization show an ORC system that reaches high efficiencies, comparable to those typical of existing system

    Surface Oscillations in Overdense Plasmas Irradiated by Ultrashort Laser Pulses

    Full text link
    The generation of electron surface oscillations in overdense plasmas irradiated at normal incidence by an intense laser pulse is investigated. Two-dimensional (2D) particle-in-cell simulations show a transition from a planar, electrostatic oscillation at 2ω2\omega, with ω\omega the laser frequency, to a 2D electromagnetic oscillation at frequency ω\omega and wavevector k>ω/ck>\omega/c. A new electron parametric instability, involving the decay of a 1D electrostatic oscillation into two surface waves, is introduced to explain the basic features of the 2D oscillations. This effect leads to the rippling of the plasma surface within a few laser cycles, and is likely to have a strong impact on laser interaction with solid targets.Comment: 9 pages (LaTeX, Revtex4), 4 GIF color figures, accepted for publication in Phys. Rev. Let

    Geometric dynamical observables in rare gas crystals

    Full text link
    We present a detailed description of how a differential geometric approach to Hamiltonian dynamics can be used for determining the existence of a crossover between different dynamical regimes in a realistic system, a model of a rare gas solid. Such a geometric approach allows to locate the energy threshold between weakly and strongly chaotic regimes, and to estimate the largest Lyapunov exponent. We show how standard mehods of classical statistical mechanics, i.e. Monte Carlo simulations, can be used for our computational purposes. Finally we consider a Lennard Jones crystal modeling solid Xenon. The value of the energy threshold turns out to be in excellent agreement with the numerical estimate based on the crossover between slow and fast relaxation to equilibrium obtained in a previous work by molecular dynamics simulations.Comment: RevTeX, 19 pages, 6 PostScript figures, submitted to Phys. Rev.

    Evidence of resonant surface wave excitation in the relativistic regime through measurements of proton acceleration from grating targets

    Get PDF
    The interaction of laser pulses with thin grating targets, having a periodic groove at the irradiated surface, has been experimentally investigated. Ultrahigh contrast (1012\sim 10^{12}) pulses allowed to demonstrate an enhanced laser-target coupling for the first time in the relativistic regime of ultra-high intensity >10^{19} \mbox{W/cm}^{2}. A maximum increase by a factor of 2.5 of the cut-off energy of protons produced by Target Normal Sheath Acceleration has been observed with respect to plane targets, around the incidence angle expected for resonant excitation of surface waves. A significant enhancement is also observed for small angles of incidence, out of resonance.Comment: 5 pages, 5 figures, 2nd version implements final correction

    Experimental and numerical study of a micro-cogeneration Stirling unit under diverse conditions of the working fluid

    Get PDF
    Micro-cogeneration Stirling units are promising for residential applications because of high total efficiencies, favorable ratios of thermal to electrical powers and low CO as well as NOx emissions. This work focuses on the experimental and the numerical analysis of a commercial unit generating 8 kW of hot water (up to 15 kW with an auxiliary burner) and 1 kW of electricity burning natural gas. In the experimental campaign, the initial pressure of the working fluid is changed in a range from 9 to 24 barg – 20 barg being the nominal value – while the inlet temperature of the water loop and its mass flow rate are kept at the nominal conditions of, respectively, 50°C and 0.194 kg/s. The experimental results indicate clearly that the initial pressure of the working fluid – Nitrogen – affects strongly the net electrical power output and efficiency. The best performance for the output and efficiency of 943 W and 9.6% (based on the higher heating value of the burnt natural gas) are achieved at 22 barg. On the other hand, the thermal power trend indicates a maximum value of 8420 W at the working pressure of 24 barg, which corresponds to a thermal efficiency of 84.7% (again based on higher heating value). Measurements are coupled to a detailed model based on a modification of the work by Urieli and Berchowitz. Thanks to the tuning with the experimental results, the numerical model allows investigating the profiles of the main thermodynamic parameters and heat losses during the cycle, as well as estimating those physical properties that are not directly measurable. The major losses turn to be the wall parasitic heat conduction from heater to cooler and the non-unitary effectiveness of the regenerator

    Synthesis, molecular modeling and biological evaluation of two new chicoric acid analogs

    Get PDF
    Two conformationally constrained compounds similar to chicoric acid but lacking the catechol and carboxyl groups were prepared. In these analogues, the single bond between the two caffeoyl fragments has been replaced with a chiral oxirane ring and both aromatic residues modified protecting completely or partially the catechol moiety as methyl ether. Preliminary molecular modelling studies carried out on the two analogues showed interactions near the active site of HIV integrase; however, in comparison with raltegravir, the biological evaluation confirmed that CAA-1 and CAA-2 were unable to inhibit infection at lower concentration

    Polarization Dependence of Bulk Ion Acceleration from Ultrathin Foils Irradiated by High-Intensity Ultrashort Laser Pulses

    Get PDF
    The acceleration of ions from ultrathin (10-100 nm) carbon foils has been investigated using intense (∼ 6 x1020 Wcm-2), ultrashort (45 fs) laser pulses, highlighting a strong dependence of the ion beam parameters on the laser polarization, with circularly polarized (CP) pulses producing the highest energies for both protons and carbons (25-30 MeV/nucleon); carbon ion energies obtained employing CP pulses were signicantly higher (∼2.5 times) than for irradiations employing linearly polarized (LP) pulses. Particle-in-cell simulations indicate that Radiation Pressure Acceleration becomes the dominant mechanism for the thinnest targets and CP pulses
    corecore