1,980 research outputs found

    Fractography as a tool to assess the occurrence of fatigue fractures in complex microstructure structural components

    Get PDF
    Fractographic assessment of fatigue fractures may be difficult if they occur in metallic components characterized by low ductility complex microstructures. In these cases reconciliation of known fatigue rupture mechanisms with fractographic appearance of fatigue fractured surfaces is challenging. Special techniques coupled with theory development may be necessary. Pearlitic steels or steels with predominant pearliticmicrostructures are among the ones that are visited and their fatigue fractures interpreted. Analogously, fatigued Al foundry alloys, with hypoeutectic Al-Si compositions, are also illustrated

    Low Power Analog Design in Scaled Technologies

    Get PDF
    In this paper an overview on the main issues in analog IC design in scaled CMOS technology is presented. Decreasing the length of MOS channel and the gate oxide has led to undoubted advantages in terms of chip area, speed and power consumption (mainly exploited in the digital parts). Besides, some drawbacks are introduced in term of power leakage and reliability. Moreover, the scaled technology lower supply voltage requirement has led analog designers to find new circuital solution to guarantee the required performance

    Coming together to define membrane contact sites.

    Get PDF
    Close proximities between organelles have been described for decades. However, only recently a specific field dealing with organelle communication at membrane contact sites has gained wide acceptance, attracting scientists from multiple areas of cell biology. The diversity of approaches warrants a unified vocabulary for the field. Such definitions would facilitate laying the foundations of this field, streamlining communication and resolving semantic controversies. This opinion, written by a panel of experts in the field, aims to provide this burgeoning area with guidelines for the experimental definition and analysis of contact sites. It also includes suggestions on how to operationally and tractably measure and analyze them with the hope of ultimately facilitating knowledge production and dissemination within and outside the field of contact-site research

    Effect of sputter gas on the physical and magnetic microstructure of Co/Cu multilayers

    Get PDF
    The physical structure of Co/Cu multilayers, sputtered in different gases (Ar, Kr, and Xe) together with the domain structures that these films support have been investigated using electron microscopy in an attempt to explain the differences in their measured magnetoresistance (MR). Both planar and cross‐sectional analyses were undertaken. Due to only partial antiferromagnetic coupling submicron domain structures were observed by Lorentz microscopy in all multilayers. The complex nature of these domain structures made classification difficult, although small magnetic field application allowed wall motion and nucleation to be observed. All films were polycrystalline in nature, although average grains sizes differed. However, smoother interfaces together with less well defined crystal boundaries were observed in the Kr and Xe sputtered films. This trend did not correlate with giant MR (GMR) measurements as the Xe sputtered films had the lowest GMR value of the three

    Thermal diffusivity measurements of metastable austenite during continuous cooling

    Get PDF
    The thermal diffusivity of the metastable undercooled austenite is relevant for the quantitative analysis of the carbon and low-alloy steel quench. The standard laser-flash method requires prior thermal equilibrium between the sample and the furnace, which may not be possible to achieve without allowing the metastable phase to transform. Nevertheless, depending upon the steel's hardenability, the thermal transient due to a laser pulse may be much shorter than a cooling transient sufficiently steep to prevent the transformation of the austenite. In one such case, flash measurements were performed during continuous sample cooling and the thermal diffusivity of the metastable austenite was determined by using an extension of the standard analytical model. The adopted analytical model and data reduction procedure are described and the limitations and uncertainties of this method are discussed, also with the aid of a non-linear numerical simulation. The measured thermal diffusivity of the under cooled low-alloy austenite decreases linearly from 5.4•10−6 m2 s−1 at 1133 K to 4.3•10−6 m2 s−1 at 755 K; this trend is in broad agreement with one previous set of measurements upon a low-alloy undercooled austenite and with a large number of previous standard measurements upon stable (high-alloy) austenitic stainless steels

    Fracture toughness and fatigue resistance of quenched and tempered steels with microstructures deriving from a slant quench. Consequences on technical standards

    Get PDF
    Mechanical components fabbricated with quenched and tempered steels, exhibiting mixed microstructures as derived from slant quench conditions, are frequently encountered in the industrial practice, owing to a tendency to employ quite low alloy steels or due to quite large sections. The low notch strength of mixed microstructure steel samples was already emphasized in the 1950s; yet, it has never been investigated again. Also, technical standards have not addressed the risk deriving from the use of steel components with mixed microstructures. When pearlite and ferrite are present alongside tempered martensite and bainite, the fracture toughness of steel pieces diminishes to very dangerous levels. Results of an experimental program on the fracture toughness of plastic mould steels are reported, singling out microstructure mixtures with too a low toughness. In addition, the fatigue crack propagation rate is adversely affected by inhomogeneous metallographic structures. It is inferred that experimental results and ensuing considerations should be taken into account when formulating technical norms

    2D seismic tomography of Somma-Vesuvius: Description of the experiment and preliminary results

    Get PDF
    A multidisciplinary project for the investigation of Mt. Vesuvius structure was started in 1993. The core of the project is represented by a high resolution seismic tomography study by using controlled and natural sources. The main research objective is to investigate the feeding system of the volcano and to retrieve details of the upper crustal structure in the area. A first 2D active seismic experiment was performed in May 1994, with the aim of studing the feasibility of using tomographic techniques for exploring the volcano interiors. Particularly, this experiment was designed to obtain information on the optimal sources-receivers configuration and on the depth extension of the volume sampled by shot-generated seismic waves. 66 three-component seismic stations and 16 single-component analogue instruments were installed by several Italian and French groups to record signals generated by three on-land, underground explosions. Sources and geophones were deployed along a 30-km NW-SE profile passing through the volcano crater. Receivers were placed at an average spacing of 250 m in the middle of the recording line and at 500 m outside. The arrival time data base was complemented by first P and S readings of microearthquakes which occurred in the recent past within the volcano. The first arrival data set was preliminarily used to determine the shallow structure of the volcano by applying Thurber's (1983) tomographic inversion technique. This analysis shows evidence for a high-velocity body which extends vertically from about 400 m below the crater down to at least 3000 m and for a shallow 300-500 m thick low-velocity cover which borders the edifice. Data from the distant shot show evidence for arrivals of deep reflected/converted phases and provide information on the deeper structure under the volcano. The results from the interpretation of 2D data are used for planning a 3D tomographic survey which will be carried out in 1996

    Vesicular and non-vesicular transport feed distinct glycosylation pathways in the Golgi.

    Get PDF
    Newly synthesized proteins and lipids are transported across the Golgi complex via different mechanisms whose respective roles are not completely clear. We previously identified a non-vesicular intra-Golgi transport pathway for glucosylceramide (GlcCer)--the common precursor of the different series of glycosphingolipids-that is operated by the cytosolic GlcCer-transfer protein FAPP2 (also known as PLEKHA8) (ref. 1). However, the molecular determinants of the FAPP2-mediated transfer of GlcCer from the cis-Golgi to the trans-Golgi network, as well as the physiological relevance of maintaining two parallel transport pathways of GlcCer--vesicular and non-vesicular--through the Golgi, remain poorly defined. Here, using mouse and cell models, we clarify the molecular mechanisms underlying the intra-Golgi vectorial transfer of GlcCer by FAPP2 and show that GlcCer is channelled by vesicular and non-vesicular transport to two topologically distinct glycosylation tracks in the Golgi cisternae and the trans-Golgi network, respectively. Our results indicate that the transport modality across the Golgi complex is a key determinant for the glycosylation pattern of a cargo and establish a new paradigm for the branching of the glycosphingolipid synthetic pathwa
    corecore