59 research outputs found
Experiments and gyrokinetic simulations of TCV plasmas with negative triangularity in view of DTT operations
Negative triangularity scenarios: from TCV and AUG experiments to DTT predictions
Experiments, gyrokinetic simulations and transport predictions were performed to investigate if a negative triangularity (NT) L-mode option for the Divertor Tokamak Test (DTT) full-power scenario would perform similarly to the positive triangularity (PT) H-mode reference scenario, avoiding the harmful edge localized modes (ELMs). The simulations show that a beneficial effect of NT coming from the edge/scrape-off layer (SOL) region ρ tor > 0.9 is needed to allow the actual NT L-mode option to perform like the PT H-mode. Dedicated experiments at TCV and AUG, with DTT-like shapes, show an optimistic picture. In TCV, experiments indicate that even with the relatively small triangularity of the DTT NT scenario, a large beneficial effect of NT comes from the plasma edge and SOL, allowing NT L-modes to outperform PT L-modes with the same power input, reaching the same central pressures as PT H-modes with twice as much applied heating power. For AUG, NT plasmas go into H-mode more easily than for TCV, but always present much smaller pedestals compared with PT plasmas with the same input power, showing a much weaker or absent ELM activity. However, NT has a smaller beneficial effect for AUG than for TCV, with NT pulses outperforming PT pulses with the same input power only for an ECRH-only case with relatively low input power. For the considered AUG cases, PT pulses perform better than NT ones at higher ECRH power or with mixed NBI and ECRH power. Based on this analysis, the NT option is a viable alternative for the DTT full power scenario, providing high performance plasmas with reduced or absent ELMs
Physics basis for the divertor tokamak test facility
This paper is dealing with the physics basis used for the design of the Divertor Tokamak Test facility (DTT), under construction in Frascati (DTT 2019 DTT interim design report (2019)) Italy, and with the description of the main target plasma scenarios of the device. The main goal of the facility will be the study of the power exhaust, intended as a fully integrated core-edge problem, and eventually to propose an optimized divertor for the European DEMO plant. The approach used to design the facility is described and their main features are reported, by using simulations performed by state-of-the-art codes both for the bulk and edge studies. A detailed analysis of MHD, including also the possibility to study disruption events and Energetic Particles physics is also reported. Eventually, a description of the ongoing work to build-up a Research Plan written and shared by the full EUROfusion community is presente
Physics basis for the divertor tokamak test facility
This paper is dealing with the physics basis used for the design of the Divertor Tokamak Test facility (DTT), under construction in Frascati (DTT 2019 DTT interim design report (2019)) Italy, and with the description of the main target plasma scenarios of the device. The main goal of the facility will be the study of the power exhaust, intended as a fully integrated core-edge problem, and eventually to propose an optimized divertor for the European DEMO plant. The approach used to design the facility is described and their main features are reported, by using simulations performed by state-of-the-art codes both for the bulk and edge studies. A detailed analysis of MHD, including also the possibility to study disruption events and Energetic Particles physics is also reported. Eventually, a description of the ongoing work to build-up a Research Plan written and shared by the full EUROfusion community is presented
Overview of the FTU results
Since the 2018 IAEA FEC Conference, FTU operations have been devoted to several experiments covering a large range of topics, from the investigation of the behaviour of a liquid tin limiter to the runaway electrons mitigation and control and to the stabilization of tearing modes by electron cyclotron heating and by pellet injection. Other experiments have involved the spectroscopy of heavy metal ions, the electron density peaking in helium doped plasmas, the electron cyclotron assisted start-up and the electron temperature measurements in high temperature plasmas. The effectiveness of the laser induced breakdown spectroscopy system has been demonstrated and the new capabilities of the runaway electron imaging spectrometry system for in-flight runaways studies have been explored. Finally, a high resolution saddle coil array for MHD analysis and UV and SXR diamond detectors have been successfully tested on different plasma scenarios
Experimental research on the TCV tokamak
Tokamak à configuration variable (TCV), recently celebrating 30 years of near-continual operation, continues in its missions to advance outstanding key physics and operational scenario issues for ITER and the design of future power plants such as DEMO. The main machine heating systems and operational changes are first described. Then follow five sections: plasma scenarios. ITER Base-Line (IBL) discharges, triangularity studies together with X3 heating and N2 seeding. Edge localised mode suppression, with a high radiation region near the X-point is reported with N2 injection with and without divertor baffles in a snowflake configuration. Negative triangularity (NT) discharges attained record, albeit transient, βN ∼ 3 with lower turbulence, higher low-Z impurity transport, vertical stability and density limits and core transport better than the IBL. Positive triangularity L-Mode linear and saturated ohmic confinement confinement saturation, often-correlated with intrinsic toroidal rotation reversals, was probed for D, H and He working gases. H-mode confinement and pedestal studies were extended to low collisionality with electron cyclotron heating obtaining steady state electron iternal transport barrier with neutral beam heating (NBH), and NBH driven H-mode configurations with off-axis co-electron cyclotron current drive. Fast particle physics. The physics of disruptions, runaway electrons and fast ions (FIs) was developed using near-full current conversion at disruption with recombination thresholds characterised for impurity species (Ne, Ar, Kr). Different flushing gases (D2, H2) and pathways to trigger a benign disruption were explored. The 55 kV NBH II generated a rich Alfvénic spectrum modulating the FI fas ion loss detector signal. NT configurations showed less toroidal Alfvén excitation activity preferentially affecting higher FI pitch angles. Scrape-off layer and edge physics. gas puff imaging systems characterised turbulent plasma ejection for several advanced divertor configurations, including NT. Combined diagnostic array divertor state analysis in detachment conditions was compared to modelling revealing an importance for molecular processes. Divertor physics. Internal gas baffles diversified to include shorter/longer structures on the high and/or low field side to probe compressive efficiency. Divertor studies concentrated upon mitigating target power, facilitating detachment and increasing the radiated power fraction employing alternative divertor geometries, optimised X-point radiator regimes and long-legged configurations. Smaller-than-expected improvements with total flux expansion were better modelled when including parallel flows. Peak outer target heat flux reduction was achieved (>50%) for high flux-expansion geometries, maintaining core performance (H98 > 1). A reduction in target heat loads and facilitated detachment access at lower core densities is reported. Real-time control. TCV’s real-time control upgrades employed MIMO gas injector control of stable, robust, partial detachment and plasma β feedback control avoiding neoclassical tearing modes with plasma confinement changes. Machine-learning enhancements include trajectory tracking disruption proximity and avoidance as well as a first-of-its-kind reinforcement learning-based controller for the plasma equilibrium trained entirely on a free-boundary simulator. Finally, a short description of TCV’s immediate future plans will be given
Analysis of edge transport in L-mode negative triangularity TCV discharges
One of the major problems for future tokamak devices are ELMs (Edge Localized Modes) as they can lead to large, uncontrolled heat fluxes at the machine targets. For this reason, different techniques and alternative magnetic configurations are under study to mitigate or avoid these phenomena. One of the most promising among these studies is the Negative Triangularity (NT) configuration, which exhibits a global confinement comparable with H-Mode operation and, staying in L-mode, could enable an easier power exhaust dissipation due to a possible bigger heat flux decay length with respect to the conventional Positive triangularity (PT) H-mode. In this work, the fluid code SOLEDGE2D-EIRENE is used to study edge transport. Studies are made on discharges performed in the TCV device (Tokamak a` configuration variable), which can create a variety of different plasma geometries thanks to 16 independently powered poloidal field coils and its open vacuum vessel. In order to understand if and how power and particle exhaust in NT differs with respect to those of the PT shape, four discharges in single null magnetic divertor configuration with fixed lower triangularity (6bot = +0.5) but with different upper triangu-larity (from 6up =-0.28 to 6up = +0.45) have been modelled. All of them are ohmically heated, L-mode deuterium plasmas, and in the high recycling regime. Moreover, these discharges were previously used in [4] to measure the heat flux decay length by IRT (Infrared Thermography), allowing us to make comparisons with modelling results.SP
Analysis of edge transport in L-mode negative triangularity TCV discharges
One of the major problems for future tokamak devices are ELMs (Edge Localized Modes) as they can lead to large, uncontrolled heat fluxes at the machine targets. For this reason, different techniques and alternative magnetic configurations are under study to mitigate or avoid these phenomena. One of the most promising among these studies is the Negative Triangularity (NT) configuration, which exhibits a global confinement comparable with H-Mode operation and, staying in L-mode, could enable an easier power exhaust dissipation due to a possible bigger heat flux decay length with respect to the conventional Positive triangularity (PT) H-mode. In this work, the fluid code SOLEDGE2D-EIRENE is used to study edge transport. Studies are made on discharges performed in the TCV device (Tokamak à configuration variable), which can create a variety of different plasma geometries thanks to 16 independently powered poloidal field coils and its open vacuum vessel. In order to understand if and how power and particle exhaust in NT differs with respect to those of the PT shape, four discharges in single null magnetic divertor configuration with fixed lower triangularity (δbot = +0.5) but with different upper triangularity (from δup = −0.28 to δup = +0.45) have been modelled. All of them are ohmically heated, L-mode deuterium plasmas, and in the high recycling regime. Moreover, these discharges were previously used in [4] to measure the heat flux decay length by IRT (Infrared Thermography), allowing us to make comparisons with modelling results
- …
