98 research outputs found
Impact of diabetes duration and cardiovascular risk factors on mortality in type 2 diabetes: the Hoorn Study
Background. Several studies have reported differences in the mortality risk between diabetic subjects detected by screening and known diabetic patients. We studied mortality in relation to diabetes duration, and the contribution of other cardiovascular risk factors to the elevated risk. Materials and methods. Participants were type 2 diabetic subjects (n = 174) of a population-based cohort study. Of these, 95 were diagnosed by screening. Known diabetic subjects were grouped into two categories of diabetes duration, with a median duration of 2.4 and 11.2 years, respectively. We assessed the contribution of classical cardiovascular risk factors (dyslipidaemia, hypertension, and prior myocardial infarction), and of new cardiovascular risk factors (microalbuminuria, von Willebrand factor, sVCAM-1 and C-reactive protein) to the mortality risk during nearly 10 years of follow up. Cox's proportional hazards model was used to study the association of diabetes duration and mortality. Results. The age- and sex-adjusted relative risks of mortality were 2.06 (95% C.I. 1.04-4.10) and 3.19 (1.64-6.20) for the patients with short- and long-term diabetes compared with the screening-detected diabetic subjects, respectively. Adjustment for cardiovascular risk factors resulted in a reduction of mortality risk in both groups: 1.13 (0.51-2.50) and 2.39 (1.18-4.83), respectively. Mortality risk significantly increased with increasing diabetes duration, even after multiple adjustment (P-value for trend ranged from < 0.001-0.018). Conclusions. Mortality risk increased with increasing diabetes duration. In subjects with short diabetes duration the mortality risk could largely be attributed to other risk factors. In subjects with a longer diabetes duration, however, the elevated mortality risk was independent of these cardiovascular risk factors
Field observations of soil temperature and water tension feedback effects on needle ice nights
Numerous laboratory studies have indicated that thermal gradients may produce appreciable soil water movement in the absence of a strong suction field. In addition the soil water flow and thermal properties are physically interrelated. This paper presents field data taken during needle ice events at Vancouver, Canada, and yields an indication of the magnitude of interaction between the thermal and water flow properties. This feedback determines the state of soil frost hazard in a location where damage to plant material is produced by ice frost hazard in a location where damage to plant material is produced by ice needle growth. Further apparently anomalous interruption in the normal parabolic temperature-time pattern during radiation events is interpreted as the product of water flow down a thermal gradient. Zahlreiche Laboratoriumsstudien deuteten darauf hin, daß thermische Gradienten selbst bei Abwesenheit starker Saugkräfte bedeutsame Wasserbewegungen im Boden hervorrufen können. Überdies stehen die Strömung des Bodenwassers und die thermischen Eigenschaften des Bodens damit in physikalischem Zusammenhang. Die vorliegende Arbeit enthält Meßdaten, die während der Bildung von Nadeleis in Vancouver, Kanada, gewonnen wurden und größenordnungsmäßige Beziehungen zwischen Wärme- und Wasserstrom im Boden angeben. Die Rückkopplung zwischen den beiden Strömen bestimmt die Bodenfrostgefahr an Orten, wo Pflanzenschäden durch Eisnadelbildung hervorgerufen werden. Eine offensichtlich abnormale Unterbrechung des normalen Temperatur-Zeit-Verhältnisses während des Ausstrahlungsvorganges wird als Effekt der Wasserströmung entsprechend einem einem thermischen Gradienten interpretiert.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41661/1/703_2005_Article_BF02247747.pd
Characterization of anticoagulant heparinoids by immunoprofiling
Heparinoids are used in the clinic as anticoagulants. A specific pentasaccharide in heparinoids activates antithrombin III, resulting in inactivation of factor Xa and–when additional saccharides are present–inactivation of factor IIa. Structural and functional analysis of the heterogeneous heparinoids generally requires advanced equipment, is time consuming, and needs (extensive) sample preparation. In this study, a novel and fast method for the characterization of heparinoids is introduced based on reactivity with nine unique anti-heparin antibodies. Eight heparinoids were biochemically analyzed by electrophoresis and their reactivity with domain-specific anti-heparin antibodies was established by ELISA. Each heparinoid displayed a distinct immunoprofile matching its structural characteristics. The immunoprofile could also be linked to biological characteristics, such as the anti-Xa/anti-IIa ratio, which was reflected by reactivity of the heparinoids with antibodies HS4C3 (indicative for 3-O-sulfates) and HS4E4 (indicative for domains allowing anti-factor IIa activity). In addition, the immunoprofile could be indicative for heparinoid-induced side-effects, such as heparin-induced thrombocytopenia, as illustrated by reactivity with antibody NS4F5, which defines a very high sulfated domain. In conclusion, immunoprofiling provides a novel, fast, and simple methodology for the characterization of heparinoids, and allows high-throughput screening of (new) heparinoids for defined structural and biological characteristics
A rockslide-generated tsunami in a Greenland fjord rang Earth for 9 days
Climate change is increasingly predisposing polar regions to large landslides. Tsunamigenic landslides have occurred recently in Greenland (Kalaallit Nunaat), but none have been reported from the eastern fjords. In September 2023, we detected the start of a 9-day-long, global 10.88-millihertz (92-second) monochromatic very-long-period (VLP) seismic signal, originating from East Greenland. In this study, we demonstrate how this event started with a glacial thinning–induced rock-ice avalanche of 25 × 106 cubic meters plunging into Dickson Fjord, triggering a 200-meter-high tsunami. Simulations show that the tsunami stabilized into a 7-meter-high long-duration seiche with a frequency (11.45 millihertz) and slow amplitude decay that were nearly identical to the seismic signal. An oscillating, fjord-transverse single force with a maximum amplitude of 5 × 1011 newtons reproduced the seismic amplitudes and their radiation pattern relative to the fjord, demonstrating how a seiche directly caused the 9-day-long seismic signal. Our findings highlight how climate change is causing cascading, hazardous feedbacks between the cryosphere, hydrosphere, and lithosphere
A rockslide-generated tsunami in a Greenland fjord rang Earth for 9 days
Climate change is increasingly predisposing polar regions to large landslides. Tsunamigenic landslides have occurred recently in Greenland (Kalaallit Nunaat), but none have been reported from the eastern fjords. In September 2023, we detected the start of a 9-day-long, global 10.88-millihertz (92-second) monochromatic very-long-period (VLP) seismic signal, originating from East Greenland. In this study, we demonstrate how this event started with a glacial thinning–induced rock-ice avalanche of 25 × 106 cubic meters plunging into Dickson Fjord, triggering a 200-meter-high tsunami. Simulations show that the tsunami stabilized into a 7-meter-high long-duration seiche with a frequency (11.45 millihertz) and slow amplitude decay that were nearly identical to the seismic signal. An oscillating, fjord-transverse single force with a maximum amplitude of 5 × 1011 newtons reproduced the seismic amplitudes and their radiation pattern relative to the fjord, demonstrating how a seiche directly caused the 9-day-long seismic signal. Our findings highlight how climate change is causing cascading, hazardous feedbacks between the cryosphere, hydrosphere, and lithosphere.acceptedVersio
- …
