90 research outputs found

    Bmcc1s, a Novel Brain-Isoform of Bmcc1, Affects Cell Morphology by Regulating MAP6/STOP Functions

    Get PDF
    The BCH (BNIP2 and Cdc42GAP Homology) domain-containing protein Bmcc1/Prune2 is highly enriched in the brain and is involved in the regulation of cytoskeleton dynamics and cell survival. However, the molecular mechanisms accounting for these functions are poorly defined. Here, we have identified Bmcc1s, a novel isoform of Bmcc1 predominantly expressed in the mouse brain. In primary cultures of astrocytes and neurons, Bmcc1s localized on intermediate filaments and microtubules and interacted directly with MAP6/STOP, a microtubule-binding protein responsible for microtubule cold stability. Bmcc1s overexpression inhibited MAP6-induced microtubule cold stability by displacing MAP6 away from microtubules. It also resulted in the formation of membrane protrusions for which MAP6 was a necessary cofactor of Bmcc1s. This study identifies Bmcc1s as a new MAP6 interacting protein able to modulate MAP6-induced microtubule cold stability. Moreover, it illustrates a novel mechanism by which Bmcc1 regulates cell morphology

    The Library as Safe Space

    Get PDF
    Purpose: This chapter will explain how libraries define safe space through policies, procedures, and professional codes of ethics. The chapter will generate a history of the concept of libraries as safe space, will explain how libraries attempt to create safe spaces in physical and online environments, and will show how library practices both help and harm patrons in need of safe space. Design/methodology/approach: This chapter provides a review of the literature that illustrates how libraries provide safe space—or not—for their patrons. The author will deconstruct the ALA Code of Ethics and Bill of Rights to demonstrate how libraries remain heteronormative institutions that do not recognize the existence of diverse patrons or employees, and how this phenomenon manifests in libraries. Findings: Libraries, either through their physical construction or through policies and procedures, have become spaces for illegal activities and discrimination. Populations who would be most likely to use libraries often report barriers to access. Practical Implications: Libraries should revisit their policies and procedures, as well as assess their physical and online spaces, to determine whether or not they truly provide safe space for their patrons. While libraries can become safer spaces, they should clearly communicate what types of safety they actually provide. Originality/value: This chapter offers a critique of libraries as safe spaces, which will challenge popular opinions of libraries, and compel the profession to improve

    The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy

    Get PDF
    The clinical understanding of the CDKL5 disorder remains limited, with most information being derived from small patient groups seen at individual centres. This study uses a large international data collection to describe the clinical profile of the CDKL5 disorder and compare with Rett syndrome (RTT). Information on individuals with cyclin-dependent kinase-like 5 (CDKL5) mutations (n=86) and females with MECP2 mutations (n=920) was sourced from the InterRett database. Available photographs of CDKL5 patients were examined for dysmorphic features. The proportion of CDKL5 patients meeting the recent Neul criteria for atypical RTT was determined. Logistic regression and time-to-event analyses were used to compare the occurrence of Rett-like features in those with MECP2 and CDKL5 mutations. Most individuals with CDKL5 mutations had severe developmental delay from birth, seizure onset before the age of 3 months and similar non-dysmorphic features. Less than one-quarter met the criteria for early-onset seizure variant RTT. Seizures and sleep disturbances were more common than in those with MECP2 mutations whereas features of regression and spinal curvature were less common. The CDKL5 disorder presents with a distinct clinical profile and a subtle facial, limb and hand phenotype that may assist in differentiation from other early-onset encephalopathies. Although mutations in the CDKL5 gene have been described in association with the early-onset variant of RTT, in our study the majority did not meet these criteria. Therefore, the CDKL5 disorder should be considered separate to RTT, rather than another variant

    Modulation of dendritic spine development and plasticity by BDNF and vesicular trafficking: fundamental roles in neurodevelopmental disorders associated with mental retardation and autism

    Get PDF
    The process of axonal and dendritic development establishes the synaptic circuitry of the central nervous system (CNS) and is the result of interactions between intrinsic molecular factors and the external environment. One growth factor that has a compelling function in neuronal development is the neurotrophin brain-derived neurotrophic factor (BDNF). BDNF participates in axonal and dendritic differentiation during embryonic stages of neuronal development, as well as in the formation and maturation of dendritic spines during postnatal development. Recent studies have also implicated vesicular trafficking of BDNF via secretory vesicles, and both secretory and endosomal trafficking of vesicles containing synaptic proteins, such as neurotransmitter and neurotrophin receptors, in the regulation of axonal and dendritic differentiation, and in dendritic spine morphogenesis. Several genes that are either mutated or deregulated in neurodevelopmental disorders associated with mental retardation have now been identified, and several mouse models of these disorders have been generated and characterized. Interestingly, abnormalities in dendritic and synaptic structure are consistently observed in human neurodevelopmental disorders associated with mental retardation, and in mouse models of these disorders as well. Abnormalities in dendritic and synaptic differentiation are thought to underlie altered synaptic function and network connectivity, thus contributing to the clinical outcome. Here, we review the roles of BDNF and vesicular trafficking in axonal and dendritic differentiation in the context of dendritic and axonal morphological impairments commonly observed in neurodevelopmental disorders associated with mental retardation

    Secretion of mast cell inflammatory mediators is enhanced by CADM1-dependent adhesion to sensory neurons

    Get PDF
    Neuroimmune interactions are important in the pathophysiology of many chronic inflammatory diseases, particularly those associated with alterations in sensory processing and pain. Mast cells and sensory neuron nerve endings are found in areas of the body exposed to the external environment; both are specialized to sense potential damage by injury or pathogens and signal to the immune system and nervous system respectively, to elicit protective responses. Cell adhesion molecule 1 (CADM1), also known as SynCAM1, has previously been identified as an adhesion molecule which may couple mast cells to sensory neurons however, whether this molecule exerts a functional as well as structural role in neuroimmune cross-talk is unknown. Here we show, using a newly developed in vitro co-culture system consisting of murine bone marrow derived mast cells (BMMC) and adult sensory neurons isolated from dorsal root ganglions (DRG), that CADM1 is expressed in mast cells and adult sensory neurons and mediates strong adhesion between the two cell types. Non-neuronal cells in the DRG cultures did not express CADM1, and mast cells did not adhere to them. The interaction of BMMCs with sensory neurons was found to induce mast cell degranulation and IL-6 secretion and to enhance responses to antigen stimulation and activation of FcεRI receptors. Secretion of TNFα in contrast was not affected, nor was secretion evoked by compound 48/80. Co-cultures of BMMCs with HEK 293 cells, which also express CADM1, while also leading to adhesion did not replicate the effects of sensory neurons on mast cells, indicative of a neuron-specific interaction. Application of a CADM1 blocking peptide or knockdown of CADM1 in BMMCs significantly decreased BMMC attachment to sensory neurites and abolished the enhanced secretory responses of mast cells. In conclusion, CADM1 is necessary and sufficient to drive mast cell-sensory neuron adhesion and promote the development of a microenvironment in which neurons enhance mast cell responsiveness to antigen; this interaction could explain why the incidence of painful neuroinflammatory disorders such as irritable bowel syndrome (IBS) are increased in atopic patients

    Le problème de la construction de l'offre et de la demande (résumé).

    No full text
    International audienc

    Compte rendu de la tournée du groupe "Les fonctions non marchandes de la forêt méditerranéenne" dans le Luberon

    No full text
    International audienc

    Compte rendu des débats du groupe Montagnes et collines à potentialités de production ligneuse de Foresterranée 90

    No full text
    Conclusions des travaux du groupe "Montagnes et collines à potentialités de production ligneuse" de Foresterranée 90, suivies de la liste des participants et des résumés des travaux du groupe

    Présentation des travaux du groupe "Montagnes et collines à potentialités de production ligneuse".

    No full text
    Les travaux du groupe de Foresterranée ont rassemblé vingt trois communications brèves, réparties en six rubriques : 1- : Les techniques de reboisement et de restauration des sols, la sylviculture des espaces boisés (aspects techniques des reboisements d
    corecore