1,159 research outputs found

    Proteomics in the Light of Integral Value Transformations

    Get PDF
    In this paper, Proteomics have been studied in the light of Integral Value Transformations (IVTs) which was introduced by Sk. S. Hassan et al in 2010. For case study, a Human olfactory receptor OR1D2 protein sequence has been taken and then different IVTs have been used to evolve OR1D2 into some other proteomic like sequences. It has been observed that some of the generated sequences have been mapped to another olfactory receptor in Human or in some other species. Also it has been corroborated through fractal dimension that some of the fundamental protein properties have been nearly intact, even after the mapping. This study will help to comprehend the proteomic evolutionary network with the help of IVTs

    Proton Decay and Related Processes in Unified Models with Gauged Baryon Number:

    Full text link
    In unification models based on SU(15) or SU(16), baryon number is part of the gauge symmetry, broken spontaneously. In such models, we discuss various scenarios of important baryon number violating processes like proton decay and neutron-antineutron oscillation. Our analysis depends on the effective operator method, and covers many variations of symmetry breaking, including different intermediate groups and different Higgs boson content. We discuss processes mediated by gauge bosons and Higgs bosons parallely. We show how accidental global or discrete symmetries present in the full gauge invariant Lagrangian restrict baryon number violating processes in these models. In all cases, we find that baryon number violating interactions are sufficiently suppressed to allow grand unification at energies much lower than the usual 101610^{16} GeV.Comment: (32 pages LATEX) [DOE-ER\,40757-022, CPP-93-22] {Small changes made and two references added. This version will appear in Phys. Rev. D

    SU(16) grandunification: breaking scales, proton decay and neutrino magnetic moment

    Full text link
    We give a detailed renormalization group analysis for the SU(16) grandunified group with general breaking chains in which quarks and leptons transform separately at intermediate energies. Our analysis includes the effects of Higgs bosons. We show that the grandunification scale could be as low as 108.5\sim 10^{8.5} GeV and give examples where new physics could exist at relatively low energy (250\sim 250 GeV). We consider proton decay in this model and show that it is consistent with a low grandunification scale. We also discuss the possible generation of a neutrino magnetic moment in the range of 101110^{-11} to 1010μB10^{-10}\mu_B with a very small mass by the breaking of the embedded SU(2)ν_\nu symmetry at a low energy.Comment: (16 pages in REVTEX + 6 figures not included) OITS-49

    B-physics constraints on baryon number violating couplings: grand unification or R-parity violation

    Get PDF
    We investigate the role that baryon number violating interactions may play in BB phenomenology. Present in various grand unified theories, supersymmetric theories with R-parity violation and composite models, a diquark state could be quite light. Using the data on B decays as well as BBˉB - {\bar B} mixing, we find strong constraints on the couplings that such a light diquark state may have with the Standard Model quarks.Comment: 19 pages, latex, no figures, 13 tables include

    de Sitter branes with a bulk scalar

    Full text link
    We propose new braneworld models arising from a scalar field in the bulk. In these examples, the induced on--brane line element is de Sitter (or anti de Sitter) and the bulk (five dimensional) Einstein equations can be exactly solved to obtain warped spacetimes. The solutions thus derived are single and two-brane models -- one with {\em thin} branes while the other one of the {\em thick} variety. The field profiles and the potentials are obtained and analysed for each case. We note that for the {\em thick} brane scenario the field profile resembles a kink, whereas for one or more {\em thin} branes, it is finite and bounded in the domain of the extra dimension. We have also addressed the localisation of gravity and other matter fields on the brane for these braneworld models.Comment: 18 pages, 5 figures. Substantial changes and new results. To appear in GR

    Radiatively Induced Neutrino Masses and Oscillations in an SU(3)_LxU(1)_N Gauge Model

    Get PDF
    We have constructed an SU(3)L×U(1)NSU(3)_L \times U(1)_N gauge model utilizing an U(1)LU(1)_{L^\prime} symmetry, where LL^\prime = LeLμLτL_e-L_\mu-L_\tau, which accommodates tiny neutrino masses generated by LL^\prime-conserving one-loop and LL^\prime-breaking two-loop radiative mechanisms. The generic smallness of two-loop radiative effects compared with one-loop radiative effects describes the observed hierarchy of Δmatm2\Delta m_{atm}^2 \gg Δm2\Delta m_\odot^2. A key ingredient for radiative mechanisms is a charged scalar (h+h^+) that couples to charged lepton-neutrino pairs and h+h^+ together with the standard Higgs scalar (ϕ\phi) can be unified into a Higgs triplet as (ϕ0\phi^0, ϕ\phi^-, h+h^+)T^T. This assignment in turn requires lepton triplets (ψLi\psi_L^i) with heavy charged leptons (κL+i\kappa_L^{+i}) as the third member: ψLi=(νLi,Li,κL+i)T\psi_L^i=(\nu^i_L,\ell^i_L,\kappa^{+i}_L)^T, where ii (=1,2,3=1,2,3) denotes three families. It is found that our model is relevant to yield quasi-vacuum oscillations for solar neutrinos.Comment: 11 pages, revtex, including 2 figures, accepted for publication in Phys. Rev. D with minor modification of our resul
    corecore