132 research outputs found
Earth Resources Technology Satellite-1 (ERTS-1) data and anthropology: Use of these data in carrying capacity estimates for sites in Upper Volta and Niger
The author has identified the following significant results. Repetitively derived multispectral band imagery from ERTS-1 is now available for many parts of the earth's land surface and represents major new data sources for anthropological work in habitat, land use, and settlement patterns. A completed first step test of ERTS-1 data is available in carrying capacity estimates for Mossi, Hausa, and Sonrai sites derived from: (1) field work; (2) aerial photography; and (3) ERTS-1. Data can test more than one carrying capacity formula
ERTS-1 imagery of village and cultivation sites in Niger and Upper Volta
There are no author-identified significant results in this report
Interactive multi-spectral analysis of more than one Sonrai village in Niger, West Africa
Use of LANDSAT data and an interaction system is considered for identifying and measuring small scale compact human settlements (villages) for demographic and anthropological studies. Because village components are not uniformly distributed within any one village, they apparently are multimodal, spectrally. Therefore, the functions of location and enumeration are kept separate. Measurement of a known village is compared with CCT response
Ab initio GW many-body effects in graphene
We present an {\it ab initio} many-body GW calculation of the self-energy,
the quasiparticle band plot and the spectral functions in free-standing undoped
graphene. With respect to other approaches, we numerically take into account
the full ionic and electronic structure of real graphene and we introduce
electron-electron interaction and correlation effects from first principles.
Both non-hermitian and also dynamical components of the self-energy are fully
taken into account. With respect to DFT-LDA, the Fermi velocity is
substantially renormalized and raised by a 17%, in better agreement with
magnetotransport experiments. Furthermore, close to the Dirac point the linear
dispersion is modified by the presence of a kink, as observed in ARPES
experiments. Our calculations show that the kink is due to low-energy single-particle excitations and to the plasmon. Finally, the GW
self-energy does not open the band gap.Comment: 5 pages, 4 figures, 1 tabl
Reduced Density-Matrix Functional Theory: correlation and spectroscopy
In this work we explore the performance of approximations to electron
correlation in reduced density-matrix functional theory (RDMFT) and of
approximations to the observables calculated within this theory. Our analysis
focuses on the calculation of total energies, occupation numbers,
removal/addition energies, and spectral functions. We use the exactly solvable
Hubbard molecule at 1/4 and 1/2 filling as test systems. This allows us to
analyze the underlying physics and to elucidate the origin of the observed
trends. For comparison we also report the results of the approximation,
where the self-energy functional is approximated, but no further hypothesis are
made concerning the approximations of the observables. In particular we focus
on the atomic limit, where the two sites of the molecule are pulled apart and
electrons localize on either site with equal probability, unless a small
perturbation is present: this is the regime of strong electron correlation. In
this limit, using the Hubbard molecule at 1/2 filling with or without a
spin-symmetry-broken ground state, allows us to explore how degeneracies and
spin-symmetry breaking are treated in RDMFT. We find that, within the used
approximations, neither in RDMFT nor in the signature of strong
correlation are present in the spin-singlet ground state, whereas both give the
exact result for the spin-symmetry broken case. Moreover we show how the
spectroscopic properties change from one spin structure to the other. Our
findings can be generalized to other situations, which allows us to make
connections to real materials and experiment
Public pension accounting rules and economic outcomes
We find a negative association between a state׳s fiscal condition and the use of discretion in applying Governmental Accounting Standards Board (GASB) rules to understate pension funding gaps. We also find that the use of discretion is negatively associated with states’ decisions to increase taxes and cut spending. In addition, we find that the funding gap understatement is positively associated with higher future labor costs. Importantly, this association is primarily attributable to the GASB methodology, which systematically understates the funding gap. This suggests that the GASB approach is associated with policy choices that have the potential to exacerbate fiscal stress. Keywords: Public pension;
Economic consequences of accounting rules; Real decision
The Influence of Elections on the Accounting Choices of Governmental Entities
This paper investigates whether gubernatorial elections affect state governments’ accounting choices. We identify two accounts, the compensated absence liability account and the unfunded pension liability account, which provide incumbent gubernatorial candidates with flexibility for manipulation. We find that, in an election year, the liability associated with compensated absences and unfunded pension liabilities are both systematically lower. We also find that the variation in these employment-related liabilities is correlated with proxies for the incumbent's incentives and ability to manipulate their accounting reports. Jointly, these results suggest that state governments manipulate accounting numbers to present a healthier financial picture in an election year
Approximations for many-body Green's functions: insights from the fundamental equations
Several widely used methods for the calculation of band structures and photo
emission spectra, such as the GW approximation, rely on Many-Body Perturbation
Theory. They can be obtained by iterating a set of functional differential
equations relating the one-particle Green's function to its functional
derivative with respect to an external perturbing potential. In the present
work we apply a linear response expansion in order to obtain insights in
various approximations for Green's functions calculations. The expansion leads
to an effective screening, while keeping the effects of the interaction to all
orders. In order to study various aspects of the resulting equations we
discretize them, and retain only one point in space, spin, and time for all
variables. Within this one-point model we obtain an explicit solution for the
Green's function, which allows us to explore the structure of the general
family of solutions, and to determine the specific solution that corresponds to
the physical one. Moreover we analyze the performances of established
approaches like over the whole range of interaction strength, and we
explore alternative approximations. Finally we link certain approximations for
the exact solution to the corresponding manipulations for the differential
equation which produce them. This link is crucial in view of a generalization
of our findings to the real (multidimensional functional) case where only the
differential equation is known.Comment: 17 pages, 7 figure
Excitonic effects in solids described by time-dependent density functional theory
Starting from the many-body Bethe-Salpeter equation we derive an
exchange-correlation kernel that reproduces excitonic effects in bulk
materials within time-dependent density functional theory. The resulting
accounts for both self-energy corrections and the electron-hole
interaction. It is {\em static}, {\em non-local} and has a long-range Coulomb
tail. Taking the example of bulk silicon, we show that the
divergency is crucial and can, in the case of continuum excitons, even be
sufficient for reproducing the excitonic effects and yielding excellent
agreement between the calculated and the experimental absorption spectrum.Comment: 6 pages, 1 figur
Study of a Nonlocal Density scheme for electronic--structure calculations
An exchange-correlation energy functional beyond the local density
approximation, based on the exchange-correlation kernel of the homogeneous
electron gas and originally introduced by Kohn and Sham, is considered for
electronic structure calculations of semiconductors and atoms. Calculations are
carried out for diamond, silicon, silicon carbide and gallium arsenide. The
lattice constants and gaps show a small improvement with respect to the LDA
results.
However, the corresponding corrections to the total energy of the isolated
atoms are not large enough to yield a substantial improvement for the cohesive
energy of solids, which remains hence overestimated as in the LDA.Comment: 4 postscript figure
- …
