602 research outputs found

    Broad-band Spectral Evolution of Scorpius X-1 along its Color-Color Diagram

    Get PDF
    We analyze a large collection of RXTE archive data from April 1997 to August 2003 of the bright X-ray source Scorpius X-1 in order to study the broadband spectral evolution of the source for different values of the inferred mass accretion rate by studying energy spectra from selected regions in the Z-track of its Color-Color Diagram. A two-component model, consisting of a soft thermal component interpreted as thermal emission from an accretion disk and a thermal Comptonization component, is unable to fit the whole 3--200 keV energy spectrum at low accretion rates. Strong residuals in the highest energy band of the spectrum require the addition of a third component that can be fitted with a power-law component, that could represent a second thermal Comptonization from a much hotter plasma, or a hybrid thermal/non-thermal Comptonization. We discuss the physical implications derived from the results of our analysis, with a particular emphasis on the hardest part of the X-ray emission and its possible origins.Comment: 18 pages. Accepted for publication in Ap

    Comment on "Correlated electron-nuclear dynamics: Exact factorization of the molecular wavefunction" [J. Chem. Phys. 137, 22A530 (2012)]

    Full text link
    In spite of the relevance of the proposal introduced in the recent work A. Abedi, N. T. Maitra and E. K. U. Gross, J. Chem. Phys. 137, 22A530, 2012, there is an important ingredient which is missing. Namely, the proof that the norms of the electronic and nuclear wavefunctions which are the solutions to the nonlinear equations of motion are preserved by the evolution. To prove the conservation of these norms is precisely the objective of this Comment.Comment: 2 pages, published versio

    A relativistic iron emission line from the neutron star low-mass X-ray binary GX 3+1

    Get PDF
    We present the results of a spectroscopic study of the Fe K{\alpha} emission of the persistent neutron-star atoll low-mass X-ray binary and type I X-ray burster GX 3+1 with the EPIC-PN on board XMM-Newton. The source shows a flux modulation over several years and we observed it during its fainter phase, which corresponds to an X-ray luminosity of Lx~10^37 ergs/s. When fitted with a two-component model, the X-ray spectrum shows broad residuals at \sim6-7 keV that can be ascribed to an iron K{\alpha} fluorescence line. In addition, lower energy features are observed at \sim3.3 keV, \sim3.9 keV and might originate from Ar XVIII and Ca XIX. The broad iron line feature is well fitted with a relativistically smeared profile. This result is robust against possible systematics caused by instrumental pile-up effects. Assuming that the line is produced by reflection from the inner accretion disk, we infer an inner disk radius of \sim25 Rg and a disk inclination of 35{\deg} < i < 44{\deg}.Comment: 4 pages, 3 figures Accepted for publication in Astronomy and Astrophysic

    Spectral Evolution of Scorpio X-1 along its Color-Color Diagram

    Get PDF
    We analyze a large collection of RXTE archive data of the bright X-ray source Scorpius X-1 in order to study the broadband spectral evolution of the source for different values of the inferred mass accretion rate by selecting energy spectra from its Color-Color Diagram. We model the spectra with the combination of two absorbed components: a soft thermal component, which can be interpreted as thermal emission from an accretion disk, and a hybrid Comptonization component, which self-consistently includes the Fe Kα fluorescence line and the Compton reflected continuum. The presence of hard emission in Scorpius X-1 has been previously reported, however, without a clear relation with the accretion rate. We show, for the first time, that there exists a common trend in the spectral evolution of the source, where the spectral parameters change in correlation with the position of the source in the CD. Using a hybrid thermal/non-thermal Comptonization model (EQPAIR code), we show that the ratio of the power supplied to the non-thermal distribution to the total power injected into the Comptonizing plasma correlates with the accretion rate, being the highest at the lowest accretion rates. We discuss the physical implications derived from the results of our analysis, with a particular emphasis on the hardest part of the X-ray emission and its possible origin

    Nonextensive thermodynamic functions in the Schr\"odinger-Gibbs ensemble

    Get PDF
    Schr\"odinger suggested that thermodynamical functions cannot be based on the gratuitous allegation that quantum-mechanical levels (typically the orthogonal eigenstates of the Hamiltonian operator) are the only allowed states for a quantum system [E. Schr\"odinger, Statistical Thermodynamics (Courier Dover, Mineola, 1967)]. Different authors have interpreted this statement by introducing density distributions on the space of quantum pure states with weights obtained as functions of the expectation value of the Hamiltonian of the system. In this work we focus on one of the best known of these distributions, and we prove that, when considered in composite quantum systems, it defines partition functions that do not factorize as products of partition functions of the noninteracting subsystems, even in the thermodynamical regime. This implies that it is not possible to define extensive thermodynamical magnitudes such as the free energy, the internal energy or the thermodynamic entropy by using these models. Therefore, we conclude that this distribution inspired by Schr\"odinger's idea can not be used to construct an appropriate quantum equilibrium thermodynamics.Comment: 32 pages, revtex 4.1 preprint style, 5 figures. Published version with several changes with respect to v2 in text and reference

    A Hard X-ray View on Scorpius X-1 with INTEGRAL: non-Thermal Emission ?

    Full text link
    We present here simultaneous INTEGRAL/RXTE observations of Sco X-1, and in particular a study of the hard X-ray emission of the source and its correlation with the position in the Z-track of the X-ray color-color diagram. We find that the hard X-ray (above about 30 keV) emission of Sco X-1 is dominated by a power-law component with a photon index of ~3. The flux in the power-law component slightly decreases when the source moves in the color-color diagram in the sense of increasing inferred mass accretion rate from the horizontal branch to the normal branch/flaring branch vertex. It becomes not significantly detectable in the flaring branch, where its flux has decreased by about an order of magnitude. These results present close analogies to the behavior of GX 17+2, one of so-called Sco-like Z sources. Finally, the hard power law in the spectrum of Sco X-1 does not show any evidence of a high energy cutoff up to 100 - 200 keV, strongly suggesting a non-thermal origin of this component.Comment: 5 pages including 3 figures. Accepted for publication by ApJ Letter

    The near-IR counterpart of IGR J17480-2446 in Terzan 5

    Get PDF
    Some globular clusters in our Galaxy are noticeably rich in low-mass X-ray binaries. Terzan 5 has the richest population among globular clusters of X- and radio-pulsars and low-mass X-ray binaries. The detection and study of optical/IR counterparts of low-mass X-ray binaries is fundamental to characterizing both the low-mass donor in the binary system and investigating the mechanisms of the formation and evolution of this class of objects. We aim at identifying the near-IR counterpart of the 11 Hz pulsar IGRJ17480-2446 discovered in Terzan 5. Adaptive optics (AO) systems represent the only possibility for studying the very dense environment of GC cores from the ground. We carried out observations of the core of Terzan 5 in the near-IR bands with the ESO-VLT NAOS-CONICA instrument. We present the discovery of the likely counterpart in the Ks band and discuss its properties both in outburst and in quiescence. Archival HST observations are used to extend our discussion to the optical bands. The source is located at the blue edge of the turn-off area in the color-magnitude diagram of the cluster. Its luminosity increase from quiescence to outburst, by a factor 2.5, allows us to discuss the nature of the donor star in the context of the double stellar generation population of Terzan 5 by using recent stellar evolution models.Comment: 7 pages, 4 figure

    Study of the Cir X--1 Broad Band Spectrum at Orbital Phases Close to the Apoastron

    Get PDF
    We report on the results of a BeppoSAX (1.8--200 keV) observation of the peculiar X-ray binary source Circinus X--1 (Cir X--1) at the orbital phases between 0.61 and 0.63. We find that three components are needed to fit the broad band spectrum: a blackbody component, at a temperature of 0.6\sim 0.6 keV, a Comptonized component, with a seed-photon temperature of 1.2\sim 1.2 keV, electron temperature of 6\sim 6 keV and optical depth of 1.7\sim 1.7, and a power-law component dominating the spectrum at energies higher than 20 keV. We interpret the blackbody as the emission from the accretion disk, while the Comptonized component probably comes from a corona surrounding the inner part of the system. This spectrum is different from that observed at the periastron (Iaria et al. 2001a) because of the presence of the blackbody component. We discuss the implications of this difference and the presence of the power-law component.Comment: 15 pages, 6 figures, accepted by Ap

    L-functions of Symmetric Products of the Kloosterman Sheaf over Z

    Full text link
    The classical nn-variable Kloosterman sums over the finite field Fp{\bf F}_p give rise to a lisse Qˉl\bar {\bf Q}_l-sheaf Kln+1{\rm Kl}_{n+1} on Gm,Fp=PFp1{0,}{\bf G}_{m, {\bf F}_p}={\bf P}^1_{{\bf F}_p}-\{0,\infty\}, which we call the Kloosterman sheaf. Let Lp(Gm,Fp,SymkKln+1,s)L_p({\bf G}_{m,{\bf F}_p}, {\rm Sym}^k{\rm Kl}_{n+1}, s) be the LL-function of the kk-fold symmetric product of Kln+1{\rm Kl}_{n+1}. We construct an explicit virtual scheme XX of finite type over SpecZ{\rm Spec} {\bf Z} such that the pp-Euler factor of the zeta function of XX coincides with Lp(Gm,Fp,SymkKln+1,s)L_p({\bf G}_{m,{\bf F}_p}, {\rm Sym}^k{\rm Kl}_{n+1}, s). We also prove similar results for kKln+1\otimes^k {\rm Kl}_{n+1} and kKln+1\bigwedge^k {\rm Kl}_{n+1}.Comment: 16 page
    corecore